Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
bioRxiv ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38746441

Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.

2.
J Parkinsons Dis ; 14(4): 643-656, 2024.
Article En | MEDLINE | ID: mdl-38578904

Environmental risk factors and gene-environment interactions play a critical role in Parkinson's disease (PD). However, the relatively large contribution of environmental risk factors in the overwhelming majority of PD cases has been widely neglected in the field. A "PD prevention agenda" proposed in this journal laid out a set of research priorities focused on preventing PD through modification of environmental risk factors. This agenda includes a call for preclinical studies to employ new high-throughput methods for analyzing transcriptomics and epigenomics to provide a deeper understanding of the effects of exposures linked to PD. Here, we focus on epitranscriptomics as a novel area of research with the potential to add to our understanding of the interplay between genes and environmental exposures in PD. Both epigenetics and epitranscriptomics have been recognized as potential mediators of the complex relationship between genes, environment, and disease. Multiple studies have identified epigenetic alterations, such as DNA methylation, associated with PD and PD-related exposures in human studies and preclinical models. In addition, recent technological advancements have made it possible to study epitranscriptomic RNA modifications, such as RNA N6-methyladenosine (m6A), and a handful of recent studies have begun to explore epitranscriptomics in PD-relevant exposure models. Continued exploration of epitranscriptomic mechanisms in environmentally relevant PD models offers the opportunity to identify biomarkers, pre-degenerative changes that precede symptom onset, and potential mitigation strategies for disease prevention and treatment.


Epigenesis, Genetic , Parkinson Disease , Transcriptome , Parkinson Disease/genetics , Humans , Gene-Environment Interaction , Epigenomics , Animals , RNA Processing, Post-Transcriptional , Environmental Exposure/adverse effects , DNA Methylation , RNA/genetics
3.
NPJ Parkinsons Dis ; 10(1): 7, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172128

Examination of early phases of synucleinopathy when inclusions are present, but long before neurodegeneration occurs, is critical to both understanding disease progression and the development of disease modifying therapies. The rat alpha-synuclein (α-syn) preformed fibril (PFF) model induces synchronized synucleinopathy that recapitulates the pathological features of Parkinson's disease (PD) and can be used to study synucleinopathy progression. In this model, phosphorylated α-syn (pSyn) inclusion-containing neurons and reactive microglia (major histocompatibility complex-II immunoreactive) peak in the substantia nigra pars compacta (SNpc) months before appreciable neurodegeneration. However, it remains unclear which specific genes are driving these phenotypic changes. To identify transcriptional changes associated with early synucleinopathy, we used laser capture microdissection of the SNpc paired with RNA sequencing (RNASeq). Precision collection of the SNpc allowed for the assessment of differential transcript expression in the nigral dopamine neurons and proximal glia. Transcripts upregulated in early synucleinopathy were mainly associated with an immune response, whereas transcripts downregulated were associated with neurotransmission and the dopamine pathway. A subset of 29 transcripts associated with neurotransmission/vesicular release and the dopamine pathway were verified in a separate cohort of males and females to confirm reproducibility. Within this subset, fluorescent in situ hybridization (FISH) was used to localize decreases in the Syt1 and Slc6a3 transcripts to pSyn inclusion-containing neurons. Identification of transcriptional changes in early synucleinopathy provides insight into the molecular mechanisms driving neurodegeneration.

4.
Toxicol Sci ; 196(1): 99-111, 2023 10 30.
Article En | MEDLINE | ID: mdl-37607008

Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.


Parkinson Disease , Pesticides , Synucleinopathies , Mice , Animals , Male , Female , alpha-Synuclein/metabolism , Dopamine , Dieldrin/toxicity , Mice, Inbred C57BL , Pesticides/toxicity , Vesicular Monoamine Transport Proteins , Synaptic Transmission , Substantia Nigra/metabolism
5.
NPJ Parkinsons Dis ; 8(1): 120, 2022 Sep 23.
Article En | MEDLINE | ID: mdl-36151217

Evidence for epigenetic regulation playing a role in Parkinson's disease (PD) is growing, particularly for DNA methylation. Approximately 90% of PD cases are due to a complex interaction between age, genes, and environmental factors, and epigenetic marks are thought to mediate the relationship between aging, genetics, the environment, and disease risk. To date, there are a small number of published genome-wide studies of DNA methylation in PD, but none accounted for cell type or sex in their analyses. Given the heterogeneity of bulk brain tissue samples and known sex differences in PD risk, progression, and severity, these are critical variables to account for. In this genome-wide analysis of DNA methylation in an enriched neuronal population from PD postmortem parietal cortex, we report sex-specific PD-associated methylation changes in PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2ß), NR4A2 (NURR1), and other genes involved in developmental pathways, neurotransmitter packaging and release, and axon and neuron projection guidance.

6.
Neurobiol Dis ; 141: 104947, 2020 07.
Article En | MEDLINE | ID: mdl-32422283

Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Previous work showed that developmental dieldrin exposure increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, possibly via changes in dopamine (DA) packaging and turnover. However, the relevance of the MPTP model to PD pathophysiology has been questioned. We therefore studied dieldrin-induced neurotoxicity in the α-synuclein (α-syn)-preformed fibril (PFF) model, which better reflects the α-syn pathology and toxicity observed in PD pathogenesis. Specifically, we used a "two-hit" model to determine whether developmental dieldrin exposure increases susceptibility to α-syn PFF-induced synucleinopathy. Dams were fed either dieldrin (0.3 mg/kg, every 3-4 days) or vehicle corn oil starting 1 month prior to breeding and continuing through weaning of pups at postnatal day 22. At 12 weeks of age, male and female offspring received intrastriatal α-syn PFF or control saline injections. Consistent with the male-specific increased susceptibility to MPTP, our results demonstrate that developmental dieldrin exposure exacerbates PFF-induced toxicity in male mice only. Specifically, in male offspring, dieldrin exacerbated PFF-induced motor deficits on the challenging beam and increased DA turnover in the striatum 6 months after PFF injection. However, male offspring showed neither exacerbation of phosphorylated α-syn aggregation (pSyn) in the substantia nigra (SN) at 1 or 2 months post-PFF injection, nor exacerbation of PFF-induced TH and NeuN loss in the SN 6 months post-PFF injection. Collectively, these data indicate that developmental dieldrin exposure produces a male-specific exacerbation of synucleinopathy-induced behavioral and biochemical deficits. This sex-specific result is consistent with both previous work in the MPTP model, our previously reported sex-specific effects of this exposure paradigm on the male and female epigenome, and the higher prevalence and more severe course of PD in males. The novel two-hit environmental toxicant/PFF exposure paradigm established in this project can be used to explore the mechanisms by which other PD-related exposures alter neuronal vulnerability to synucleinopathy in sporadic PD.


Dieldrin/toxicity , Motor Activity/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Pesticides/toxicity , Protein Aggregation, Pathological , alpha-Synuclein/toxicity , Animals , Dopamine/metabolism , Female , Male , Mice, Inbred C57BL , Protein Aggregation, Pathological/chemically induced , Protein Aggregation, Pathological/metabolism , Sex Factors , Substantia Nigra/metabolism , Substantia Nigra/pathology , alpha-Synuclein/administration & dosage
7.
Curr Environ Health Rep ; 7(2): 109-120, 2020 06.
Article En | MEDLINE | ID: mdl-32020534

PURPOSE OF REVIEW: The aims of this review are to evaluate the methods used to measure 5-hydroxymethylcytosine (5-hmC), and then summarize the available data investigating the impact of environmental factors on 5-hydroxymethylcytosine (5-hmC) in the brain. RECENT FINDINGS: Recent research has shown that some environmental factors, including exposure to exogenous chemicals, stress, altered diet, and exercise, are all associated with 5-hmC variation in the brain. However, due to a lack of specificity in the methods used to generate a majority of the available data, it cannot be determined whether environment-induced changes in 5-hmC occur in specific biological pathways. Environment appears to shape 5-hmC levels in the brain, but the available literature is hampered by limitations in measurement methods. The field of neuroepigenetics needs to adopt new tools to increase the specificity of its data and enhance biological interpretation of exposure-related changes in 5-hmC. This will help improve understanding of the potential roles for environmental factors and 5-hmC in neurological disease.


5-Methylcytosine/analogs & derivatives , Brain/metabolism , Environmental Exposure/analysis , 5-Methylcytosine/analysis , Environmental Biomarkers , Humans
8.
Front Genet ; 10: 801, 2019.
Article En | MEDLINE | ID: mdl-31552098

Epigenetic marks operate at multiple chromosomal levels to regulate gene expression, from direct covalent modification of DNA to three-dimensional chromosomal structure. Research has shown that 5-methylcytosine (5-mC) and its oxidized form, 5-hydroxymethylcytosine (5-hmC), are stable epigenetic marks with distinct genomic distributions and separate regulatory functions. In addition, recent data indicate that 5-hmC plays a critical regulatory role in the mammalian brain, emphasizing the importance of considering this alternative DNA modification in the context of neuroepigenetics. Traditional bisulfite (BS) treatment-based methods to measure the methylome are not able to distinguish between 5-mC and 5-hmC, meaning much of the existing literature does not differentiate these two DNA modifications. Recently developed methods, including Tet-assisted bisulfite treatment and oxidative bisulfite treatment, allow for differentiation of 5-hmC and/or 5-mC levels at base-pair resolution when combined with next-generation sequencing or methylation arrays. Despite these technological advances, there remains a lack of clarity regarding the appropriate statistical methods for integration of 5-mC and 5-hmC data. As a result, it can be difficult to determine the effects of an experimental treatment on 5-mC and 5-hmC dynamics. Here, we propose a statistical approach involving mixed effects to simultaneously model paired 5-mC and 5-hmC data as repeated measures. We tested this approach using publicly available BS/oxidative bisulfite-450K array data and showed that our new approach detected far more CpG probes with paired changes in 5-mC and 5-hmC by Alzheimer's disease status (n = 14,183 probes) compared with the overlapping differential probes generated from separate models for each epigenetic mark (n = 68). Of note, all 68 of the overlapping probe IDs from the separate models were also significant in our new modeling approach, supporting the sensitivity of our new analysis method. Using the proposed approach, it will be possible to determine the effects of an experimental treatment on both 5-mC and 5-hmC at the base-pair level.

9.
Toxicol Sci ; 169(2): 593-607, 2019 06 01.
Article En | MEDLINE | ID: mdl-30859219

Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Despite previous work showing a link between developmental dieldrin exposure and increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, the mechanism mediating this effect has not been identified. Here, we tested the hypothesis that developmental exposure to dieldrin increases neuronal susceptibility via genome-wide changes in DNA methylation. Starting at 8 weeks of age and prior to mating, female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin by feeding (every 3 days) throughout breeding, gestation, and lactation. At 12 weeks of age, pups were sacrificed and ventral mesencephalon, containing primarily substantia nigra, was microdissected. DNA was isolated and dieldrin-related changes in DNA methylation were assessed via reduced representation bisulfite sequencing. We identified significant, sex-specific differentially methylated CpGs (DMCs) and regions (DMRs) by developmental dieldrin exposure (false discovery rate < 0.05), including DMCs at the Nr4a2 and Lmx1b genes, which are involved in dopaminergic neuron development and maintenance. Developmental dieldrin exposure had distinct effects on the male and female epigenome. Together, our data suggest that developmental dieldrin exposure establishes sex-specific poised epigenetic states early in life. These poised epigenomes may mediate sensitivity to subsequent toxic stimuli and contribute to the development of late-life neurodegenerative disease, including PD.


DNA Methylation/drug effects , Dieldrin/toxicity , Dopaminergic Neurons/drug effects , Fetus/drug effects , Mesencephalon/drug effects , Parkinson Disease/etiology , Animals , Dopaminergic Neurons/physiology , Female , GRB10 Adaptor Protein/genetics , Male , Mesencephalon/metabolism , Mice, Inbred C57BL , Sex Characteristics
11.
PLoS One ; 12(11): e0188645, 2017.
Article En | MEDLINE | ID: mdl-29190738

Preterm birth (PTB), or birth before 37 weeks gestation, is the leading cause of neonatal mortality worldwide. Cervical viral infections have been established as risk factors for PTB in women, although the mechanism leading to increased risk is unknown. Using a mouse model of pregnancy, we determined that intra-vaginal HSV2 infection caused increased rates of preterm birth following an intra-vaginal bacterial infection. HSV2 infection resulted in histological changes in the cervix mimicking cervical ripening, including significant collagen remodeling and increased hyaluronic acid synthesis. Viral infection also caused aberrant expression of estrogen and progesterone receptor in the cervical epithelium. Further analysis using human ectocervical cells demonstrated a role for Src kinase in virus-mediated changes in estrogen receptor and hyaluronic acid expression. In conclusion, HSV2 affects proteins involved in tissue hormone responsiveness, causes significant changes reminiscent of premature cervical ripening, and increases risk of preterm birth. Studies such as this improve our chances of identifying clinical interventions in the future.


Cervical Length Measurement , Herpes Genitalis/pathology , Herpesvirus 2, Human/pathogenicity , Premature Birth , Animals , Escherichia coli Infections/complications , Escherichia coli Infections/physiopathology , Female , Herpes Genitalis/complications , Herpes Genitalis/physiopathology , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Pregnancy
12.
Proc Natl Acad Sci U S A ; 114(11): E2253-E2262, 2017 03 14.
Article En | MEDLINE | ID: mdl-28246328

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Dopamine/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Parkinson Disease/metabolism , Synaptic Vesicles/metabolism , Aged , Aged, 80 and over , Animals , Basal Ganglia/metabolism , Biomarkers , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Gene Deletion , Gene Expression , Humans , Locomotion , Male , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , Nerve Tissue Proteins/genetics , Nicotine/metabolism , Nicotine/pharmacology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Protein Binding , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
13.
J Chem Neuroanat ; 83-84: 82-90, 2017 Oct.
Article En | MEDLINE | ID: mdl-27836486

Vesicular monoamine transporter 2 (VMAT2, SLC18A2) is a transmembrane transporter protein that packages dopamine, serotonin, norepinephrine, and histamine into vesicles in preparation for neurotransmitter release from the presynaptic neuron. VMAT2 function and related vesicle dynamics have been linked to susceptibility to oxidative stress, exogenous toxicants, and Parkinson's disease. To address a recent depletion of commonly used antibodies to VMAT2, we generated and characterized a novel rabbit polyclonal antibody generated against a 19 amino acid epitope corresponding to an antigenic sequence within the C-terminal tail of mouse VMAT2. We used genetic models of altered VMAT2 expression to demonstrate that the antibody specifically recognizes VMAT2 and localizes to synaptic vesicles. Furthermore, immunohistochemical labeling using this VMAT2 antibody produces immunoreactivity that is consistent with expected VMAT2 regional distribution. We show the distribution of VMAT2 in monoaminergic brain regions of mouse brain, notably the midbrain, striatum, olfactory tubercle, dopaminergic paraventricular nuclei, tuberomammillary nucleus, raphe nucleus, and locus coeruleus. Normal neurotransmitter vesicle dynamics are critical for proper health and functioning of the nervous system, and this well-characterized VMAT2 antibody will be a useful tool in studying neurodegenerative and neuropsychiatric conditions characterized by vesicular dysfunction.


Brain Chemistry , Brain/metabolism , Vesicular Monoamine Transport Proteins/biosynthesis , Animals , Antibodies , Antibody Specificity , Immunohistochemistry , Mice , Rabbits , Vesicular Monoamine Transport Proteins/analysis
14.
Toxicol Sci ; 153(1): 79-88, 2016 09.
Article En | MEDLINE | ID: mdl-27287315

The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease.


Corpus Striatum/metabolism , Dopamine/metabolism , MPTP Poisoning/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Levodopa/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vesicular Monoamine Transport Proteins/genetics
15.
Hum Mol Genet ; 25(12): 2437-2450, 2016 06 15.
Article En | MEDLINE | ID: mdl-27060332

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive deterioration of cognitive function. Pathogenesis of AD is incompletely understood; evidence suggests a role for epigenetic regulation, in particular the cytosine modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmC). 5hmC is enriched in the nervous system and displays neurodevelopment and age-related changes. To determine the role of 5hmC in AD, we performed genome-wide analyses of 5hmC in DNA from prefrontal cortex of post-mortem AD patients, and RNA-Seq to correlate changes in 5hmC with transcriptional changes. We identified 325 genes containing differentially hydroxymethylated loci (DhMLs) in both discovery and replication datasets. These are enriched for pathways involved in neuron projection development and neurogenesis. Of these, 140 showed changes in gene expression. Proteins encoded by these genes form direct protein-protein interactions with AD-associated genes, expanding the network of genes implicated in AD. We identified AD-associated single nucleotide polymorphisms (SNPs) located within or near DhMLs, suggesting these SNPs may identify regions of epigenetic gene regulation that play a role in AD pathogenesis. Finally, using an existing AD fly model, we showed some of these genes modulate AD-associated toxicity. Our data implicate neuronal projection development and neurogenesis pathways as potential targets in AD. By incorporating epigenomic and transcriptomic data with genome-wide association studies data, with verification in the Drosophila model, we can expand the known network of genes involved in disease pathogenesis and identify epigenetic modifiers of Alzheimer's disease.


Alzheimer Disease/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Neurogenesis/genetics , Prefrontal Cortex/pathology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Autopsy , Disease Models, Animal , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Genome, Human , Humans , Male , Neurons/metabolism , Neurons/pathology , Polymorphism, Single Nucleotide/genetics , Prefrontal Cortex/metabolism , Protein Interaction Mapping , tau Proteins/genetics , tau Proteins/metabolism
16.
PLoS One ; 11(3): e0150602, 2016.
Article En | MEDLINE | ID: mdl-26963248

RATIONALE: The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays. METHODS: Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms. RESULTS: Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy. CONCLUSIONS: The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions.


Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Aporphines/chemistry , Aporphines/pharmacology , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin 5-HT1 Receptor Agonists/pharmacology , Animals , Behavior, Animal/drug effects , HEK293 Cells , Humans , Mice , Receptors, Dopamine D4/agonists
17.
Proc Natl Acad Sci U S A ; 111(27): 9977-82, 2014 Jul 08.
Article En | MEDLINE | ID: mdl-24979780

Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.


Dopamine/metabolism , Parkinsonian Disorders/metabolism , Vesicular Monoamine Transport Proteins/physiology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Behavior, Animal , Chromosomes, Artificial, Bacterial , Corpus Striatum/metabolism , Mice , Mice, Transgenic , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Vesicular Monoamine Transport Proteins/genetics
18.
Neurochem Int ; 73: 89-97, 2014 Jul.
Article En | MEDLINE | ID: mdl-24398404

Active transport of neurotransmitters into synaptic vesicles is required for their subsequent exocytotic release. In the monoamine system, this process is carried out by the vesicular monoamine transporters (VMAT1 and VMAT2). These proteins are responsible for vesicular packaging of dopamine, norepinephrine, serotonin, and histamine. These proteins are essential for proper neuronal function; however, compared to their plasma membrane counterparts, there are few drugs available that target these vesicular proteins. This is partly due to the added complexity of crossing the plasma membrane, but also to the technical difficulty of assaying for vesicular uptake in high throughput. Until recently, reagents to enable high throughput screening for function of these vesicular neurotransmitter transporters have not been available. Fortunately, novel compounds and methods are now making such screening possible; thus, a renewed focus on these transporters as potential targets is timely and necessary.


Vesicular Monoamine Transport Proteins/drug effects , Animals , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Vesicular Monoamine Transport Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 110(48): 19561-6, 2013 Nov 26.
Article En | MEDLINE | ID: mdl-24218591

Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism.


Dopamine/metabolism , Dopaminergic Neurons/drug effects , Nerve Degeneration/chemically induced , Octanols/toxicity , Pheromones/toxicity , Analysis of Variance , Animals , Chromatography, High Pressure Liquid , Drosophila , Microscopy, Confocal , Movement/drug effects
20.
Curr Neurol Neurosci Rep ; 13(7): 362, 2013 Jul.
Article En | MEDLINE | ID: mdl-23690026

The defining motor characteristics of Parkinson's disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD.


Dopaminergic Neurons/metabolism , Parkinson Disease/metabolism , Synaptic Vesicles/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Biomarkers/blood , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/drug effects , Humans , Models, Neurological , Parkinson Disease/blood , Parkinson Disease/genetics , Synaptic Vesicles/drug effects , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/blood , Vesicular Monoamine Transport Proteins/genetics
...