Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 59(4): 491-498, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31809018

RESUMEN

Botulinum neurotoxins (BoNTs) are exceptionally toxic proteins that cause paralysis but are also extensively used as treatment for various medical conditions. Most BoNTs bind two receptors on neuronal cells, namely, a ganglioside and a protein receptor. Differences in the sequence between the protein receptors from different species can impact the binding affinity and toxicity of the BoNTs. Here we have investigated how BoNT/B, /DC, and /G, all three toxins that utilize synaptotagmin I and II (Syt-I and Syt-II, respectively) as their protein receptors, bind to Syt-I and -II of mouse/rat, bovine, and human origin by isothermal titration calorimetry analysis. BoNT/G had the highest affinity for human Syt-I, and BoNT/DC had the highest affinity for bovine Syt-II. As expected, BoNT/B, /DC, and /G showed very low levels of binding to human Syt-II. Furthermore, we carried out saturation transfer difference (STD) and STD-TOCSY NMR experiments that revealed the region of the Syt peptide in direct contact with BoNT/G, which demonstrate that BoNT/G recognizes the Syt peptide in a model similar to that in the established BoNT/B-Syt-II complex. Our analyses also revealed that regions outside the Syt peptide's toxin-binding region are important for the helicity of the peptide and, therefore, the binding affinity.


Asunto(s)
Toxinas Botulínicas/química , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Sinaptotagminas/ultraestructura , Animales , Sitios de Unión , Fenómenos Biofísicos , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/ultraestructura , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Bovinos , Cristalografía por Rayos X , Gangliósidos/metabolismo , Humanos , Ratones , Modelos Moleculares , Neuronas/metabolismo , Neurotoxinas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Ratas
2.
Nucleic Acids Res ; 44(15): 7219-27, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27131370

RESUMEN

The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions.


Asunto(s)
Bacteriófago P2/química , ADN Viral/química , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Nanotecnología/métodos , Imagen Individual de Molécula/métodos , Proteínas Virales/química , Proteínas Virales/metabolismo , Cristalografía por Rayos X , ADN Viral/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Nanotecnología/instrumentación , Imagen Individual de Molécula/instrumentación , Proteínas Virales/genética , Proteínas Virales/ultraestructura
3.
J Bacteriol ; 198(11): 1556-1562, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27021562

RESUMEN

Gram-positive bacteria carry out intercellular communication using secreted peptides. Important examples of this type of communication are the enterococcal sex pheromone systems, in which the transfer of conjugative plasmids is controlled by intercellular signaling among populations of donors and recipients. This review focuses on the pheromone response system of the conjugative plasmid pCF10. The peptide pheromones regulating pCF10 transfer act by modulating the ability of the PrgX transcription factor to repress the transcription of an operon encoding conjugation functions. Many Gram-positive bacteria regulate important processes, including the production of virulence factors, biofilm formation, sporulation, and genetic exchange using peptide-mediated signaling systems. The key master regulators of these systems comprise the RRNPP (RggRap/NprR/PlcR/PrgX) family of intracellular peptide receptors; these regulators show conserved structures. While many RRNPP systems include a core module of two linked genes encoding the regulatory protein and its cognate signaling peptide, the enterococcal sex pheromone plasmids have evolved to a complex system that also recognizes a second host-encoded signaling peptide. Additional regulatory genes not found in most RRNPP systems also modulate signal production and signal import in the enterococcal pheromone plasmids. This review summarizes several structural studies that cumulatively demonstrate that the ability of three pCF10 regulatory proteins to recognize the same 7-amino-acid pheromone peptide arose by convergent evolution of unrelated proteins from different families. We also focus on the selective pressures and structure/function constraints that have driven the evolution of pCF10 from a simple, single-peptide system resembling current RRNPPs in other bacteria to the current complex inducible plasmid transfer system.


Asunto(s)
Conjugación Genética , Enterococcus faecalis/metabolismo , Feromonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Biológica , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Péptidos/metabolismo
4.
Structure ; 21(9): 1602-11, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23932591

RESUMEN

Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs.


Asunto(s)
Toxinas Botulínicas/química , Sinaptotagmina II/química , Sinaptotagmina I/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clostridium botulinum , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Ratas , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA