Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1094194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684723

RESUMEN

The use of arbuscular mycorrhizal (AM) fungi has great potential, being used as biostimulants, biofertilizers and bioprotection agents in agricultural and natural ecosystems. However, the application of AM fungal inoculants is still challenging due to the variability of results when applied in production systems. This variability is partly due to differences in symbiosis establishment. Reducing such variability and promoting symbiosis establishment is essential to improve the efficiency of the inoculants. In addition to strigolactones, flavonoids have been proposed to participate in the pre-symbiotic plant-AM fungus communication in the rhizosphere, although their role is still unclear. Here, we studied the specific function of flavonoids as signaling molecules in AM symbiosis. For that, both in vitro and in planta approaches were used to test the stimulatory effect of an array of different subclasses of flavonoids on Rhizophagus irregularis spore germination and symbiosis establishment, using physiological doses of the compounds. We show that the flavone chrysin and the flavonols quercetin and rutin were able to promote spore germination and root colonization at low doses, confirming their role as pre-symbiotic signaling molecules in AM symbiosis. The results pave the way to use these flavonoids in the formulation of AM fungal-based products to promote the symbiosis. This can improve the efficiency of commercial inoculants, and therefore, help to implement their use in sustainable agriculture.

2.
Plant Cell Environ ; 44(1): 275-289, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33070347

RESUMEN

Oligogalacturonides (OGs) are fragments of pectin released from the plant cell wall during insect or pathogen attack. They can be perceived by the plant as damage signals, triggering local and systemic defence responses. Here, we analyse the dynamics of local and systemic responses to OG perception in tomato roots or shoots, exploring their impact across the plant and their relevance in pathogen resistance. Targeted and untargeted metabolomics and gene expression analysis in plants treated with purified OGs revealed that local responses were transient, while distal responses were stronger and more sustained. Remarkably, changes were more conspicuous in roots, even upon foliar application of the OGs. The treatments differentially activated the synthesis of defence-related hormones and secondary metabolites including flavonoids, alkaloids and lignans, some of them exclusively synthetized in roots. Finally, the biological relevance of the systemic defence responses activated upon OG perception was confirmed, as the treatment induced systemic resistance to Botrytis cinerea. Overall, this study shows the differential regulation of tomato defences upon OGs perception in roots and shoots and reveals the key role of roots in the coordination of the plant responses to damage sensing.


Asunto(s)
Pectinas/metabolismo , Inmunidad de la Planta , Raíces de Plantas/metabolismo , Solanum lycopersicum/inmunología , Botrytis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/inmunología , Raíces de Plantas/fisiología , Espectrometría de Masas en Tándem
3.
Plant Cell Environ ; 43(7): 1655-1668, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32222984

RESUMEN

Strigolactones (SLs) are important ex-planta signalling molecules in the rhizosphere, promoting the association with beneficial microorganisms, but also affecting plant interactions with harmful organisms. They are also plant hormones in-planta, acting as modulators of plant responses under nutrient-deficient conditions, mainly phosphate (Pi) starvation. In the present work, we investigate the potential role of SLs as regulators of early Pi starvation signalling in plants. A short-term pulse of the synthetic SL analogue 2'-epi-GR24 promoted SL accumulation and the expression of Pi starvation markers in tomato and wheat under Pi deprivation. 2'-epi-GR24 application also increased SL production and the expression of Pi starvation markers under normal Pi conditions, being its effect dependent on the endogenous SL levels. Remarkably, 2'-epi-GR24 also impacted the root metabolic profile under these conditions, promoting the levels of metabolites associated to plant responses to Pi limitation, thus partially mimicking the pattern observed under Pi deprivation. The results suggest an endogenous role for SLs as Pi starvation signals. In agreement with this idea, SL-deficient plants were less sensitive to this stress. Based on the results, we propose that SLs may act as early modulators of plant responses to P starvation.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Fosfatos/deficiencia , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solanum lycopersicum/metabolismo , Raíces de Plantas/metabolismo , Triticum/metabolismo
4.
Plant Sci ; 230: 59-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25480008

RESUMEN

Apocarotenoids are a class of compounds that play important roles in nature. In recent years, a prominent role for these compounds in arbuscular mycorrhizal (AM) symbiosis has been shown. They are derived from carotenoids by the action of the carotenoid cleavage dioxygenase (CCD) enzyme family. In the present study, using tomato as a model, the spatio-temporal expression pattern of the CCD genes during AM symbiosis establishment and functioning was investigated. In addition, the levels of the apocarotenoids strigolactones (SLs), C13 α-ionol and C14 mycorradicin (C13/C14) derivatives were analyzed. The results suggest an increase in SLs promoted by the presence of the AM fungus at the early stages of the interaction, which correlated with an induction of the SL biosynthesis gene SlCCD7. At later stages, induction of SlCCD7 and SlCCD1 expression in arbusculated cells promoted the production of C13/C14 apocarotenoid derivatives. We show here that the biosynthesis of apocarotenoids during AM symbiosis is finely regulated throughout the entire process at the gene expression level, and that CCD7 constitutes a key player in this regulation. Once the symbiosis is established, apocarotenoid flux would be turned towards the production of C13/C14 derivatives, thus reducing SL biosynthesis and maintaining a functional symbiosis.


Asunto(s)
Carotenoides/metabolismo , Dioxigenasas/metabolismo , Solanum lycopersicum/metabolismo , Vías Biosintéticas , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/metabolismo , Lactonas/química , Lactonas/metabolismo , Solanum lycopersicum/microbiología , Micorrizas/metabolismo , Micorrizas/fisiología , Raíces de Plantas , Polienos/química , Polienos/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA