Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7509, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473859

RESUMEN

High-Entropy Alloys (HEAs) are a new family of crystalline random alloys with four or more elements in a simple unit cell, at the forefront of materials research for their exceptional mechanical properties. Their strong chemical disorder leads to mass and force-constant fluctuations which are expected to strongly reduce phonon lifetime, responsible for thermal transport, similarly to glasses. Still, the long range order would associate HEAs to crystals with a complex disordered unit cell. These two families of materials, however, exhibit very different phonon dynamics, still leading to similar thermal properties. The question arises on the positioning of HEAs in this context. Here we present an exhaustive experimental investigation of the lattice dynamics in a HEA, Fe20Co20Cr20Mn20Ni20, using inelastic neutron and X-ray scattering. We demonstrate that HEAs present unique phonon dynamics at the frontier between fully disordered and ordered materials, characterized by long-propagating acoustic phonons in the whole Brillouin zone.

2.
Nat Mater ; 21(5): 555-563, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301475

RESUMEN

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H2 fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH- ions between the cathode and anode in a process that involves cooperative interactions with H2O molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge. Here quasi-elastic neutron scattering is applied over a wide range of timescales (100-103 ps) to disentangle the water, polymer relaxation and OH- diffusional dynamics in commercially available anion exchange membranes (Fumatech FAD-55) designed for selective anion transport across different technology platforms, using the concept of serial decoupling of relaxation and diffusional processes to analyse the data. Preliminary data are also reported for a laboratory-prepared anion exchange membrane especially designed for fuel cell applications.


Asunto(s)
Polímeros , Agua , Aniones , Intercambio Iónico , Iones , Membranas Artificiales , Polímeros/química , Agua/química
3.
J Phys Condens Matter ; 33(26)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33906172

RESUMEN

Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.

4.
Nanoscale Adv ; 3(3): 789-799, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36133838

RESUMEN

Water dynamics in inorganic nanotubes is studied by neutron scattering technique. Two types of aluminosilicate nanotubes are investigated: one is completely hydrophilic on the external and internal surfaces (IMO-OH) while the second possesses an internal cavity which is hydrophobic due to the replacement of Si-OH bonds by Si-CH3 ones (IMO-CH3), the external surface being still hydrophilic. The samples have internal radii equal to 7.5 and 9.8 Å, respectively. By working under well-defined relative humidity (RH) values, water dynamics in IMO-OH was revealed by quasi-elastic spectra as a function of the filling of the interior of the tubes. When one water monolayer is present on the inner surface of the tube, water molecules can jump between neighboring Si-OH sites on the circumference by 2.7 Å. A self-diffusion is then measured with a value (D = 1.4 × 10-5 cm2 s-1) around half of that in bulk water. When water molecules start filling also the interior of the tubes, a strong confinement effect is observed, with a confinement diameter (6 Å) of the same order of magnitude as the radius of the nanotube (7.5 Å). When IMO-OH is filled with water, the H-bond network is very rigid, and water molecules are immobile on the timescale of the experiment. For IMO-OH and IMO-CH3, motions of the hydroxyl groups are also evidenced. The associated relaxation time is of the order of 0.5 ps and is due to hindered rotations of these groups. In the case of IMO-CH3, quasi-elastic spectra and elastic scans are dominated by the motions of methyl groups, making the effect of the water content on the evolution of the signals negligible. It was however possible to describe torsions of methyl groups, with a corresponding rotational relaxation time of 2.6 ps. The understanding of the peculiar behavior of water inside inorganic nanotubes has implications in research areas such as nanoreactors. In particular, the locking of motions inside IMO-OH when it is filled with water prevents its use under these conditions as a nanoreactor, while the interior of the IMO-CH3 cavity is certainly a favorable place for confined chemical reactions to take place.

5.
Chem Mater ; 31(18): 7395-7404, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32063678

RESUMEN

Brownmillerite-type Sr2ScGaO5 has been investigated by a range of experimental X-ray and neutron scattering techniques (diffraction, total scattering, and spectroscopy) and density functional theory calculations in order to characterize its structure and dynamics. The material undergoes a second-order phase transition on heating during which a rearrangement of the (GaO4/2)∞ tetrahedral chains occurs, such that they change from being essentially fully ordered in a polar structure at room temperature to being orientationally disordered above 400 °C. Pair distribution function analysis carried out using neutron total scattering data suggests that GaO4 tetrahedra remain as fairly rigid units above and below this transition, whereas coordination polyhedra in the (ScO6/2)∞ layers distort more. Inelastic neutron scattering and phonon calculations reveal the particular modes that are associated with this structural change, which may assist ionic conductivity in the material at higher temperatures. On the basis of the correlations between these findings and the measured conductivity, we have synthesized a derivative compound with increased conductivity and suggest a possible conduction mechanism in these brownmillerite-type solid electrolytes.

6.
Sci Rep ; 7(1): 8326, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827621

RESUMEN

We investigate the dynamics of water confined in soft ionic nano-assemblies, an issue critical for a general understanding of the multi-scale structure-function interplay in advanced materials. We focus in particular on hydrated perfluoro-sulfonic acid compounds employed as electrolytes in fuel cells. These materials form phase-separated morphologies that show outstanding proton-conducting properties, directly related to the state and dynamics of the absorbed water. We have quantified water motion and ion transport by combining Quasi Elastic Neutron Scattering, Pulsed Field Gradient Nuclear Magnetic Resonance, and Molecular Dynamics computer simulation. Effective water and ion diffusion coefficients have been determined together with their variation upon hydration at the relevant atomic, nanoscopic and macroscopic scales, providing a complete picture of transport. We demonstrate that confinement at the nanoscale and direct interaction with the charged interfaces produce anomalous sub-diffusion, due to a heterogeneous space-dependent dynamics within the ionic nanochannels. This is irrespective of the details of the chemistry of the hydrophobic confining matrix, confirming the statistical significance of our conclusions. Our findings turn out to indicate interesting connections and possibilities of cross-fertilization with other domains, including biophysics. They also establish fruitful correspondences with advanced topics in statistical mechanics, resulting in new possibilities for the analysis of Neutron scattering data.

7.
Sci Rep ; 7(1): 2241, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28533551

RESUMEN

Ionic Liquids (ILs) are a specific class of molecular electrolytes characterized by the total absence of co-solvent. Due to their remarkable chemical and electrochemical stability, they are prime candidates for the development of safe and sustainable energy storage systems. The competition between electrostatic and van der Waals interactions leads to a property original for pure liquids: they self-organize in fluctuating nanometric aggregates. So far, this transient structuration has escaped to direct clear-cut experimental assessment. Here, we focus on a imidazolium based IL and use particle-probe rheology to (i) catch this phenomenon and (ii) highlight an unexpected consequence: the self-diffusion coefficient of the cation shows a one order of magnitude difference depending whether it is inferred at the nanometric or at the microscopic scale. As this quantity partly drives the ionic conductivity, such a peculiar property represents a strong limiting factor to the performances of ILs-based batteries.

8.
Nanoscale ; 9(5): 1901-1908, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28094396

RESUMEN

When probed at the macroscopic scale, Ionic Liquids (ILs) behave as highly dissociated (i.e. strong) electrolytes while, at the molecular scale, they show clear characteristics of weak ionic solutions. The multi-scale analysis we report in this paper reconciles these apparently at odds behaviors. We investigate by quasi-elastic neutron scattering (QENS) and neutron spin-echo (NSE), the nanometer/nanosecond dynamics of OMIM-BF4, an imidazolium-based IL showing strong nanostructuration. We also probe the same IL on the microscopic (µm and ms) scale by pulsed field gradient NMR. To interpret the neutron data, we introduce a new physical model to account for the dynamics of the side-chains and for the diffusion of the whole molecule. This model describes the observables over the whole and unprecedented investigated spatial ([0.15-1.65] Å-1) and time ([0.5-2000] ps) ranges. We arrive at a coherent and unified structural/dynamical description of the local cation dynamics: a localized motion within the IL nanometric domains is combined with a genuine long-range translational motion. The QENS, NSE and NMR experiments describe the same long-range translational process, but probed at different scales. The associated diffusion coefficients are more than one order of magnitude different. We show how this apparent discrepancy is a manifestation of the IL nanostructuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...