Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817219

RESUMEN

Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription.IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Calcio/metabolismo , Dependovirus/genética , Vectores Genéticos/metabolismo , Aparato de Golgi/metabolismo , Animales , Animales Recién Nacidos , Transporte Biológico/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sistemas CRISPR-Cas , ATPasas Transportadoras de Calcio/deficiencia , Línea Celular Tumoral , Quelantes/farmacología , Dependovirus/efectos de los fármacos , Dependovirus/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Eliminación de Gen , Vectores Genéticos/química , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/virología , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Inyecciones Intraventriculares , Ionomicina/farmacología , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Ratones Endogámicos C57BL , Técnicas Estereotáxicas , Transducción Genética , Vesiculovirus/genética , Vesiculovirus/metabolismo
2.
Mol Ther ; 26(2): 510-523, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29175157

RESUMEN

Effective gene delivery to the CNS by intravenously administered adeno-associated virus (AAV) vectors requires crossing the blood-brain barrier (BBB). To achieve therapeutic CNS transgene expression, high systemic vector doses are often required, which poses challenges such as scale-up costs and dose-dependent hepatotoxicity. To improve the specificity and efficiency of CNS gene transfer, a better understanding of the structural features that enable AAV transit across the BBB is needed. We generated a combinatorial domain swap library using AAV1, a serotype that does not traverse the vasculature, and AAVrh.10, which crosses the BBB in mice. We then screened individual variants by phylogenetic and structural analyses and subsequently conducted systemic characterization in mice. Using this approach, we identified key clusters of residues on the AAVrh.10 capsid that enabled transport across the brain vasculature and widespread neuronal transduction in mice. Through rational design, we mapped a minimal footprint from AAVrh.10, which, when grafted onto AAV1, confers the aforementioned CNS phenotype while diminishing vascular and hepatic transduction through an unknown mechanism. Functional mapping of this capsid surface footprint provides a roadmap for engineering synthetic AAV capsids for efficient CNS gene transfer with an improved safety profile.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Dependovirus/fisiología , Dependovirus/ultraestructura , Animales , Transporte Biológico , Encéfalo/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Dependovirus/clasificación , Expresión Génica , Técnicas de Transferencia de Gen , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Modelos Moleculares , Miocardio/metabolismo , Especificidad de Órganos , Filogenia , Unión Proteica , Distribución Tisular , Transducción Genética , Transgenes
3.
Bio Protoc ; 7(2)2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29226179

RESUMEN

The binding and internalization of adeno-associated virus (AAV) is an important determinant of viral infectivity and tropism. The ability to dissect these two tightly connected cellular processes would allow better understanding and provide insight on virus entry and trafficking. In the following protocol, we describe a quantitative PCR (qPCR) based method to determine the amount of vector bound to the cell surface and the amount of subsequent virus internalization based on viral genome quantification. This protocol is optimized for studying AAV. Nevertheless, it can serve as a backbone for studying other viruses with careful modification.

4.
Mol Brain ; 9(1): 52, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27164903

RESUMEN

BACKGROUND: Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. METHODS: For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. RESULTS: The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. CONCLUSIONS: Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.


Asunto(s)
Encéfalo/metabolismo , Dependovirus/metabolismo , Ojo/metabolismo , Expresión Génica , Regiones Promotoras Genéticas/genética , Animales , Barrera Hematoencefálica/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Vectores Genéticos/metabolismo , Integrasas/metabolismo , Ratones Endogámicos C57BL , Recombinación Genética/genética , Células Bipolares de la Retina/metabolismo , Transducción Genética
5.
J Biol Chem ; 291(2): 939-47, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26527686

RESUMEN

Intracellular trafficking of viruses can be influenced by a variety of inter-connected cellular sorting and degradation pathways involving endo-lysosomal vesicles, the ubiquitin-proteasome system, and autophagy-based or endoplasmic reticulum-associated machinery. In the case of recombinant adeno-associated viruses (AAV), proteasome inhibitors are known to prevent degradation of ubiquitinated AAV capsids, thereby leading to increased nuclear accumulation and transduction. However, the impact of other cellular degradation pathways on AAV trafficking is not well understood. In the current study, we screened a panel of small molecules focused on modulating different cellular degradation pathways and identified eeyarestatin I (EerI) as a novel reagent that enhances AAV transduction. EerI improved AAV transduction by an order of magnitude regardless of vector dose, genome architecture, cell type, or serotype. This effect was preceded by sequestration of AAV within enlarged vesicles that were dispersed throughout the cytoplasm. Specifically, EerI treatment redirected AAV particles toward large vesicles positive for late endosomal (Rab7) and lysosomal (LAMP1) markers. Notably, MG132 and EerI (proteasomal and endoplasmic reticulum-associated degradation inhibitors, respectively) appear to enhance AAV transduction by increasing the intracellular accumulation of viral particles in a mutually exclusive fashion. Taken together, our results expand on potential strategies to redirect recombinant AAV vectors toward more productive trafficking pathways by deregulating cellular degradation mechanisms.


Asunto(s)
Dependovirus/metabolismo , Endocitosis , Transducción Genética , Animales , Cápside/metabolismo , Línea Celular Tumoral , Pollos , Citosol/efectos de los fármacos , Citosol/metabolismo , Dependovirus/genética , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Genoma Viral , Células HEK293 , Humanos , Hidrazonas/farmacología , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Leupeptinas/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Modelos Biológicos , Serotipificación , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
6.
J Biol Chem ; 290(3): 1496-504, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25404742

RESUMEN

Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system.


Asunto(s)
Cápside/metabolismo , Dependovirus/fisiología , Integrinas/química , Acoplamiento Viral , Secuencias de Aminoácidos , Animales , Unión Competitiva , Células CHO , Cricetinae , Cricetulus , Dependovirus/genética , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Mutación , Fenotipo , Polisacáridos/química , Unión Proteica , Proteínas Virales/metabolismo , Virión/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-24533314

RESUMEN

Hosts are commonly infected with a suite of parasites, and interactions among these parasites can affect the size, structure, and behavior of host-parasite communities. As an important step to understanding the significance of co-circulating parasites, we describe prevalence of co-circulating hemoparasites in two important avian amplification hosts for West Nile virus (WNV), the American robin (Turdus migratorius) and house sparrow (Passer domesticus), during the 2010-2011 in Chicago, Illinois, USA. Rates of nematode microfilariemia were 1.5% of the robins (n = 70) and 4.2% of the house sparrows (n = 72) collected during the day and 11.1% of the roosting robins (n = 63) and 0% of the house sparrows (n = 11) collected at night. Phylogenetic analysis of nucleotide sequences of the 18S rRNA and cytochrome oxidase subunit I (COI) genes from these parasites resolved two clades of filarioid nematodes. Microscopy revealed that 18.0% of American robins (n = 133) and 16.9% of house sparrows (n = 83) hosted trypanosomes in the blood. Phylogenetic analysis of nucleotide sequences from the 18s rRNA gene revealed that the trypanosomes fall within previously described avian trypanosome clades. These results document hemoparasites in the blood of WNV hosts in a center of endemic WNV transmission, suggesting a potential for direct or indirect interactions with the virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...