Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396835

RESUMEN

Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.


Asunto(s)
Arsénico , Arsenicales , Masculino , Femenino , Animales , Ratones , Arsénico/toxicidad , Ratones Endogámicos C57BL , Cicatrización de Heridas , Fibroblastos/metabolismo
2.
Environ Toxicol ; 34(5): 634-644, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30801956

RESUMEN

There is a need to develop more animal species for assessing toxicity in marine environments. Cyst-based toxicity tests using invertebrates are especially fast, technically simple, cost-effective, and sensitive to a variety of toxicants. Over the past 30 years, a variety of toxicity endpoints have been measured using the marine rotifer Brachionus plicatilis hatched from cysts, including mortality, reproduction, ingestion, swimming, enzyme activity, and gene expression. A consensus has developed that the most ecologically relevant toxicity measurements should be made using more than one species. Furthermore, it has been noted that the rotifer species toxicant sensitivity distribution is much broader than which endpoint is measured. This implies that toxicity should be measured with the simplest, fastest, least expensive test available on as many species as feasible. If a battery of test species is to be used to estimate toxicity, diapause egg-based toxicity tests that do not require culturing of test animals will be key. In this paper, we describe how diapause eggs of a new marine rotifer, Proales similis, can be produced, stored and hatched under controlled conditions to produce animals for toxicity tests. Methods are described for quantifying the toxicity of copper, mercury and cadmium based on mortality, ingestion, reproduction, and diapause egg hatching endpoints. We found that reproduction and ingestion endpoints were generally more sensitive to the metals than mortality or diapause egg hatching. When the copper sensitivity of P. similis was compared to Brachionus manjavacas and B. plicatilis using an ingestion test, similar EC50s were observed. In contrast, the B. rotundiformis ingestion EC50 for copper was about 4× more sensitive. Although diapause egg hatching was not the most sensitive endpoint, it is the most ecologically relevant for assessing sediment toxicity. Our discovery of diapausing eggs in the P. similis life cycle has created a conundrum. We have not observed males or sex in P. similis populations, which is a direct contradiction to the orthodox view of the monogonont rotifer life cycle. Work is needed to clarify how diapause egg production is accomplished by P. similis and whether sexual reproduction is involved.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Rotíferos/efectos de los fármacos , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Animales , Estadios del Ciclo de Vida/efectos de los fármacos , Reproducción/efectos de los fármacos , Especificidad de la Especie , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA