Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 381(2260): 20230176, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37742706

RESUMEN

The issue focuses on physics-informed machine learning and its applications for structural integrity and safety assessment of engineering systems/facilities. Data science and data mining are fields in fast development with a high potential in several engineering research communities; in particular, advances in machine learning (ML) are undoubtedly enabling significant breakthroughs. However, purely ML models do not necessarily carry physical meaning, nor do they generalize well to scenarios on which they have not been trained on. This is an emerging field of research that potentially will raise a huge impact in the future for designing new materials and structures, and then for their proper final assessment. This issue aims to update the current research state of the art, incorporating physics into ML models, and providing tools when dealing with material science, fatigue and fracture, including new and sophisticated algorithms based on ML techniques to treat data in real-time with high accuracy and productivity. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2260): 20220406, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37742705

RESUMEN

The development of machine learning (ML) provides a promising solution to guarantee the structural integrity of critical components during service period. However, considering the lack of respect for the underlying physical laws, the data hungry nature and poor extrapolation performance, the further application of pure data-driven methods in structural integrity is challenged. An emerging ML paradigm, physics-informed machine learning (PIML), attempts to overcome these limitations by embedding physical information into ML models. This paper discusses different ways of embedding physical information into ML and reviews the developments of PIML in structural integrity including failure mechanism modelling and prognostic and health management (PHM). The exploration of the application of PIML to structural integrity demonstrates the potential of PIML for improving consistency with prior knowledge, extrapolation performance, prediction accuracy, interpretability and computational efficiency and reducing dependence on training data. The analysis and findings of this work outline the limitations at this stage and provide some potential research direction of PIML to develop advanced PIML for ensuring structural integrity of engineering systems/facilities. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

3.
Mater Des ; 231: 112087, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37323219

RESUMEN

While advanced imaging strategies have improved the diagnosis of bone-related pathologies, early signs of bone alterations remain difficult to detect. The Covid-19 pandemic has brought attention to the need for a better understanding of bone micro-scale toughening and weakening phenomena. This study used an artificial intelligence-based tool to automatically investigate and validate four clinical hypotheses by examining osteocyte lacunae on a large scale with synchrotron image-guided failure assessment. The findings indicate that trabecular bone features exhibit intrinsic variability related to external loading, micro-scale bone characteristics affect fracture initiation and propagation, osteoporosis signs can be detected at the micro-scale through changes in osteocyte lacunar features, and Covid-19 worsens micro-scale porosities in a statistically significant manner similar to the osteoporotic condition. Incorporating these findings with existing clinical and diagnostic tools could prevent micro-scale damages from progressing into critical fractures.

4.
Materials (Basel) ; 16(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297123

RESUMEN

The study focuses on testing a simplified way of estimating the resultant force due to ballistic impacts resulting in a full fragmentation of the impactor with no penetration of the target. The method is intended to be useful for the parsimonious structural assessment of military aircrafts with integrated ballistic protection systems by means of large scale explicit finite element simulations. The research investigates the effectiveness of the method in allowing the prediction of the fields of plastic deformation collected by hard steel plates impacted by a wide range of semi-jacketed, monolithic, and full metal jacket .308 Winchester rifle bullets. The outcomes show the effectiveness of the method being strictly related to the full compliance of the considered cases with the bullet-splash hypotheses. The study therefore suggests the application of the load history approach only after careful experimental investigations on the specific impactor-target interactions.

5.
Materials (Basel) ; 16(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36903033

RESUMEN

This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices.

6.
Sci Rep ; 12(1): 21834, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528676

RESUMEN

Developing accurate yet fast computational tools to simulate complex physical phenomena is a long-standing problem. Recent advances in machine learning have revolutionized the way simulations are approached, shifting from a purely physics- to AI-based paradigm. Although impressive achievements have been reached, efficiently predicting complex physical phenomena in materials and structures remains a challenge. Here, we present an AI-based general framework, implemented through graph neural networks, able to learn complex mechanical behavior of materials from a few hundreds data. Harnessing the natural mesh-to-graph mapping, our deep learning model predicts deformation, stress, and strain fields in various material systems, like fiber and stratified composites, and lattice metamaterials. The model can capture complex nonlinear phenomena, from plasticity to buckling instability, seemingly learning physical relationships between the predicted physical fields. Owing to its flexibility, this graph-based framework aims at connecting materials' microstructure, base materials' properties, and boundary conditions to a physical response, opening new avenues towards graph-AI-based surrogate modeling.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Examen Físico , Física
7.
Materials (Basel) ; 15(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36499797

RESUMEN

In this study, corrosion and wear behavior of three kinds of coatings by two processes, namely, plasma electrolytic oxidation (PEO) coatings (Ti/TiO2), gas nitriding coating (Ti/TiN), and the duplex coating (Ti/TiO2-N) by combination of PEO and gas nitriding methods were systematically investigated. X-ray diffraction tests, field-emission scanning electron microscopy, and adhesion tests are employed for the coating characterization, along with the wear and electrochemical test for evaluating the corrosion and tribological properties. The morphology and structure of the coating consist of micro-cavities known as the pancake structure on the surface. The electrolytic plasma oxidation process produces a typical annealing behavior with a low friction coefficient based on the wear test. The coating consists of nitride and nitrate/oxides titanium for nitrided samples. The surface morphology of nitrided oxide titanium coating shows a slight change in the size of the crystals and the diameter of the cavities due to the influence of nitrogen in the titanium oxide coating. The tribological behavior of the coatings showed that the wear resistance of the duplex coating (Ti/TiO2-N) and Ti/TiO2 coatings is significantly higher compared to Ti/TiN coatings and uncoated Ti samples. The polarization resistance of the Ti/TiO2-N and Ti/TiO2 coatings was 632.2 and 1451.9 kΩ cm2, respectively. These values are considerably greater than that of the uncoated Ti (135.9 kΩ cm2). Likewise, impedance showed that the Ti/TiO2-N and Ti/TiO2 coatings demonstrate higher charge transfer resistance than that of other samples due to better insulating behavior and denser structure.

8.
Micromachines (Basel) ; 13(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363822

RESUMEN

The dissimilar joining of martensitic and ferritic stainless steels have been developed that needs corrosion resistance and enhanced mechanical properties. In this study, the transient liquid-phase bonding of martensitic stainless steel 410 and super-ferritic stainless steel 446 was conducted with a nickel-based amorphous interlayer (BNi-2) at constant temperature (1050 °C) and increasing times of 1, 15, 30, 45, and 60 min. For characterization of the TLP-bonded samples, optical microscopy and scanning emission microscopy equipped with energy-dispersive X-ray spectroscopy were used. To investigate the mechanical properties of TLP-bonded samples, the shear strength test method was used. Finally, the X-ray diffraction method was used for microstructural investigation and phase identification. The microstructural study showed that the microstructure of base metals changed: the martensitic structure transited to tempered martensite, including ferrite + cementite colonies, and the delta phase in super-ferritic stainless steel dissolved in the matrix. During the transient liquid-phase bonding, the aggregation of boron due to its diffusion to base metals resulted in the precipitation of a secondary phase, including iron-chromium-rich borides with blocky and needle-like morphologies at the interface of the molten interlayer and base metals. On the other hand, the segregation of boron in the bonding zone resulted from a low solubility limit, and the distribution coefficient has induced some destructive and brittle phases, such as nickel-rich (Ni3B) and chromium-rich boride (CrB/Cr2B). By increasing the time, significant amounts of boron have been diffused to a base metal, and diffusion-induced isothermal solidification has happened, such that the isothermal solidification of the assembly has been completed under the 1050 °C/60 min condition. The distribution of the hardness profile is relatively uniform at the bonding zone after completing isothermal solidification, except the diffusion-affected zone, which has a higher hardness. The shear strength test showed that increasing the holding time was effective in achieving the strength near the base metals such that the maximum shear strength of about 472 MPa was achieved.

9.
Polymers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683916

RESUMEN

In tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or strategies have been developed to combat biomaterial-related infections, and among them, natural biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains one of the most significant issues. For the first time, here we present an overview of inks with antibacterial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation and antibacterial performance are also presented, along with future perspectives of the importance of developing printable inks.

10.
Nat Commun ; 13(1): 3247, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668100

RESUMEN

Bioinspired architectures are effective in enhancing the mechanical properties of materials, yet are difficult to construct in metallic systems. The structure-property relationships of bioinspired metallic composites also remain unclear. Here, Mg-Ti composites were fabricated by pressureless infiltrating pure Mg melt into three-dimensional (3-D) printed Ti-6Al-4V scaffolds. The result was composite materials where the constituents are continuous, mutually interpenetrated in 3-D space and exhibit specific spatial arrangements with bioinspired brick-and-mortar, Bouligand, and crossed-lamellar architectures. These architectures promote effective stress transfer, delocalize damage and arrest cracking, thereby bestowing improved strength and ductility than composites with discrete reinforcements. Additionally, they activate a series of extrinsic toughening mechanisms, including crack deflection/twist and uncracked-ligament bridging, which enable crack-tip shielding from the applied stress and lead to "Γ"-shaped rising fracture resistance R-curves. Quantitative relationships were established for the stiffness and strengths of the composites by adapting classical laminate theory to incorporate their architectural characteristics.


Asunto(s)
Impresión Tridimensional , Titanio
11.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566878

RESUMEN

With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.

12.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335546

RESUMEN

The structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS2) were studied in the temperature range of 23-180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures. Loading with PTFE solid lubricant particles, along with the strengthening effect of CCF, facilitated the formation and fixation of the TF on the sliding surfaces of the more compliant PEI-based composite at room temperature. In this case, a very low coefficient of friction (CoF) value of about 0.05 was observed. For the more rigid identically filled PI-based composite, the CoF value was twice as high under the same conditions. At elevated temperatures, rising both CoF levels and oscillation of their values made it difficult to retain the non-polar PTFE transfer film on the sliding surfaces of the PI-based composite. As a result, friction of the ceramic counterpart proceeded over the composite surface without any protecting TF at T ≥ 180 °C. For the sample with the more flexible PEI matrix, the PTFE-containing TF was retained on its sliding surface, providing a low WR level even under CoF rising and oscillating conditions. A similar analysis was carried out for the less efficient crystalline solid lubricant filler MoS2.

13.
Sci Rep ; 12(1): 1016, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046490

RESUMEN

Fabrication based on additive manufacturing (AM) process from a three-dimensional (3D) model has received significant attention in the past few years. Although 3D printing was introduced for production of prototypes, it has been currently used for fabrication of end-use products. Therefore, the mechanical behavior and strength of additively manufactured parts has become of significant importance. 3D printing has been affected by different parameters during preparation, printing, and post-printing processes, which have influence on quality and behavior of the additively manufactured components. This paper discusses the effects of two printing parameters on the mechanical behavior of additively manufactured components. In detail, polylactic acid material was used to print test coupons based on fused deposition modeling process. The specimens with five different raster orientations were printed with different printing speeds. Later, a series of tensile tests was performed under static loading conditions. Based on the results, strength and stiffness of the examined specimens have been determined. Moreover, dependency of the strength and elastic modulus of 3D-printed parts on the raster orientation has been documented. In the current study, fractured specimens were visually investigated by a free-angle observation system. The experimental findings can be used for the development of computational models and next design of structural components.

14.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960903

RESUMEN

Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted.

15.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960970

RESUMEN

In the work presented herein, the structural integrity of polymeric functional components made of Nylon-645 and Polylactic acid (PLA) produced by additive manufacturing (Fused Deposition Modelling, FDM) is studied. The PLA component under study was selected from the production line of a brewing company, and it was redesigned and analyzed using the Finite Element Method, 3D printed, and installed under real service. The results obtained indicated that, even though the durability of the 3D printed part was lower than the original, savings of about EUR 7000 a year could be achieved for the component studied. Moreover, it was shown that widespread use of AM with other specific PLA components could result in even more significant savings. Additionally, a metallic hanger (2700 kg/m3) from the cockpit of an airplane ATR 70 series 500 was successfully redesigned and additively manufactured in Nylon 645, resulting in a mass reduction of approximately 60% while maintaining its fit-for-purpose. Therefore, the components produced by FDM were used as fully functional components rather than prototype models, which is frequently stated as a major constraint of the FDM process.

16.
Materials (Basel) ; 14(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34772169

RESUMEN

An analytical model is proposed to rapidly capture the thermal and residual stresses values induced by the hybrid metal extrusion and bonding (HYB) process on dissimilar-metal butt-welded joints. The power input for two welding velocities is first assessed using a thermal-mechanical model solved by a heat generation routine written in MATLAB code. Subsequently, the obtained temperature history is used as input to solve the equilibrium and compatibility equations formulated to calculate the thermal and residual stresses. To verify the soundness of the analytical approach, a Finite Element numerical model of the entire process is carried out and results are compared with those coming from the proposed rapid method. It is found that the degree of accuracy reached by the analytical model is excellent, especially considering the tremendous time reduction when compared to that characterizing the standard numerical approach.

17.
Materials (Basel) ; 14(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34772249

RESUMEN

Friction stir welding (FSW) and friction stir processing (FSP) are two of the most widely used solid-state welding techniques for magnesium (Mg) and magnesium alloys. Mg-based alloys are widely used in the railway, aerospace, nuclear, and marine industries, among others. Their primary advantage is their high strength-to-weight ratio and usefulness as a structural material. Due to their properties, it is difficult to weld using traditional gas- or electric-based processes; however, FSW and FSP work very well for Mg and its alloys. Recently, extensive studies have been carried out on FSW and FSP of Mg-based alloys. This paper reviews the context of future areas and existing constraints for FSW/FSP. In addition, in this review article, in connection with the FSW and FSP of Mg alloys, research advancement; the influencing parameters and their influence on weld characteristics; applications; and evolution related to the microstructure, substructure, texture and phase formations as well as mechanical properties were considered. The mechanisms underlying the joining and grain refinement during FSW/FSP of Mg alloys-based alloys are discussed. Moreover, this review paper can provide valuable and vital information regarding the FSW and FSP of these alloys for different sectors of relevant industries.

18.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34451131

RESUMEN

The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 3 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre- and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites.

19.
Materials (Basel) ; 14(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34443121

RESUMEN

Phase transformations and the melting range of the interlayer BNi-3 were investigated by differential scanning calorimetry, which showed three stages of crystallization during heating. There were three exothermic peaks that indicated crystallization in the solid state. The cobalt-based X-45 and FSX-414 superalloys were bonded with interlayer BNi-3 at a constant holding time of 10 min with bonding temperatures of 1010, 1050, 1100, and 1150 °C using a vacuum diffusion brazing process. Examination of microstructural changes in the base metals with light microscopy and scanning electron microscopy coupled with X-ray spectroscopy based on the energy distribution showed that increasing temperature caused a solidification mode, such that the bonding centerline at 1010 °C/10 min included a γ-solid solution, Ni3B, Ni6Si2B, and Ni3Si. The athermally solidified zone of the transient liquid phase (TLP)-bonded sample at 1050 °C/10 min involved a γ-solid solution, Ni3B, CrB, Ni6Si2B, and Ni3Si. Finally, isothermal solidification was completed within 10 min at 1150 °C. The diffusion-affected zones on both sides had three distinct zones: a coarse block precipitation zone, a fine and needle-like mixed-precipitation zone, and a needle-like precipitation zone. By increasing the bonding temperature, the diffusion-affected zone became wider and led to dissolution.

20.
Micromachines (Basel) ; 12(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208605

RESUMEN

In this research article, a mini-review study is performed on the additive manufacturing (AM) of the polymeric matrix composites (PMCs) and nanocomposites. In this regard, some methods for manufacturing and important and applied results are briefly introduced and presented. AM of polymeric matrix composites and nanocomposites has attracted great attention and is emerging as it can make extensively customized parts with appreciably modified and improved mechanical properties compared to the unreinforced polymer materials. However, some matters must be addressed containing reduced bonding of reinforcement and matrix, the slip between reinforcement and matrix, lower creep strength, void configurations, high-speed crack propagation, obstruction because of filler inclusion, enhanced curing time, simulation and modeling, and the cost of manufacturing. In this review, some selected and significant results regarding AM or three-dimensional (3D) printing of polymeric matrix composites and nanocomposites are summarized and discuss. In addition, this article discusses the difficulties in preparing composite feedstock filaments and printing issues with nanocomposites and short and continuous fiber composites. It is discussed how to print various thermoplastic composites ranging from amorphous to crystalline polymers. In addition, the analytical and numerical models used for simulating AM, including the Fused deposition modeling (FDM) printing process and estimating the mechanical properties of printed parts, are explained in detail. Particle, fiber, and nanomaterial-reinforced polymer composites are highlighted for their performance. Finally, key limitations are identified in order to stimulate further 3D printing research in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...