Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 889: 164080, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201821

RESUMEN

Novel insights were provided by contrasting the composition of wild and farmed fish gut microbiomes because the latter had essentially different environmental conditions from those in the wild. This was reflected in the gut microbiome of the wild Sparus aurata and Xyrichtys novacula studied here, which showed highly diverse microbial community structures, dominated by Proteobacteria, mostly related to an aerobic or microaerophilic metabolism, but with some common shared major species, such as Ralstonia sp. On the other hand, farmed non-fasted S. aurata individuals had a microbial structure that mirrored the microbial composition of their food source, which was most likely anaerobic, since several members of the genus Lactobacillus, probably revived from the feed and enriched in the gut, dominated the communities. The most striking observation was that after a short fasting period (86 h), farmed gilthead seabream almost lost their whole gut microbiome, and the resident community associated with the mucosa had a very much reduced diversity that was highly dominated by a single potentially aerobic species Micrococcus sp., closely related to M. flavus. The results pointed to the fact that, at least for the juvenile S. aurata studied, most of the microbes in the gut were transient and highly dependent on the feed source, and that only after fasting for at least 2 days could the resident microbiome in the intestinal mucosa be determined. Since an important role of this transient microbiome in relation to fish metabolism could not be discarded, the methodological approach needs to be well designed in order not to bias the results. The results have important implications for fish gut studies that could explain the diversity and occasional contradictory results published in relation to the stability of marine fish gut microbiomes, and might provide important information for feed formulation in the aquaculture industry.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Dorada , Animales , Bacterias , Alimentación Animal/análisis , Dorada/metabolismo
2.
PLoS One ; 13(10): e0205207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281676

RESUMEN

Ostreid herpesvirus-1 (OsHV-1) has been involved in mass mortality episodes of Pacific oysters Crassostrea gigas throughout the world, causing important economic losses to the aquaculture industry. In the present study, magnetic beads (MBs) coated with an anionic polymer were used to capture viable OsHV-1 from two types of naturally infected matrix: oyster homogenate and seawater. Adsorption of the virus on the MBs and characterisation of the MB-virus conjugates was demonstrated by real-time quantitative PCR (qPCR). To study the infective capacity of the captured virus, MB-virus conjugates were injected in the adductor muscle of naïve spat oysters, using oyster homogenate and seawater without MBs as positive controls, and bare MBs and sterile water as negative controls. Mortalities were induced after injection with MB-virus conjugates and in positive controls, whereas no mortalities were recorded in negative controls. Subsequent OsHV-1 DNA and RNA analysis of the oysters by qPCR and reverse transcription qPCR (RT-qPCR), respectively, confirmed that the virus was the responsible for the mortality event and the ability of the MBs to capture viable viral particles. The capture of viable OsHV-1 using MBs is a rapid and easy isolation method and a promising tool, combined with qPCR, to be applied to OsHV-1 detection in aquaculture facilities.


Asunto(s)
Acuicultura/métodos , Crassostrea/virología , Virus ADN/aislamiento & purificación , Alimentos Marinos/virología , Agua de Mar/virología , Animales , Virus ADN/genética , Virus ADN/patogenicidad , ADN Viral/aislamiento & purificación , Separación Inmunomagnética/métodos , Océano Pacífico , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA