Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
EBioMedicine ; 105: 105191, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38865747

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) frequently leads to neurological complications after recovery from acute infection, with higher prevalence in women. However, mechanisms by which SARS-CoV-2 disrupts brain function remain unclear and treatment strategies are lacking. We previously demonstrated neuroinflammation in the olfactory bulb of intranasally infected hamsters, followed by alpha-synuclein and tau accumulation in cortex, thus mirroring pathogenesis of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. METHODS: To uncover the sex-specific spatiotemporal profiles of neuroinflammation and neuronal dysfunction following intranasal SARS-CoV-2 infection, we quantified microglia cell density, alpha-synuclein immunoreactivity and inhibitory interneurons in cortical regions, limbic system and basal ganglia at acute and late post-recovery time points. FINDINGS: Unexpectedly, microglia cell density and alpha-synuclein immunoreactivity decreased at 6 days post-infection, then rebounded to overt accumulation at 21 days post-infection. This biphasic response was most pronounced in amygdala and striatum, regions affected early in Parkinson's disease. Several brain regions showed altered densities of parvalbumin and calretinin interneurons which are involved in cognition and motor control. Of note, females appeared more affected. INTERPRETATION: Our results demonstrate that SARS-CoV-2 profoundly disrupts brain homeostasis without neuroinvasion, via neuroinflammatory and protein regulation mechanisms that persist beyond viral clearance. The regional patterns and sex differences are in line with neurological deficits observed after SARS-CoV-2 infection. FUNDING: Federal Ministry of Health, Germany (BMG; ZMV I 1-2520COR501 to G.G.), Federal Ministry of Education and Research, Germany (BMBF; 03COV06B to G.G.), Ministry of Science and Culture of Lower Saxony in Germany (14-76403-184, to G.G. and F.R.).

3.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37572667

RESUMEN

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Asunto(s)
Aromatasa , COVID-19 , Femenino , Humanos , Masculino , Aromatasa/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
4.
Nat Commun ; 14(1): 3267, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277327

RESUMEN

COVID-19 survivors often suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Current evidence suggests dysregulated alveolar regeneration as a possible explanation for respiratory PASC, which deserves further investigation in a suitable animal model. This study investigates morphological, phenotypical and transcriptomic features of alveolar regeneration in SARS-CoV-2 infected Syrian golden hamsters. We demonstrate that CK8+ alveolar differentiation intermediate (ADI) cells occur following SARS-CoV-2-induced diffuse alveolar damage. A subset of ADI cells shows nuclear accumulation of TP53 at 6- and 14-days post infection (dpi), indicating a prolonged arrest in the ADI state. Transcriptome data show high module scores for pathways involved in cell senescence, epithelial-mesenchymal transition, and angiogenesis in cell clusters with high ADI gene expression. Moreover, we show that multipotent CK14+ airway basal cell progenitors migrate out of terminal bronchioles, aiding alveolar regeneration. At 14 dpi, ADI cells, peribronchiolar proliferates, M2-macrophages, and sub-pleural fibrosis are observed, indicating incomplete alveolar restoration. The results demonstrate that the hamster model reliably phenocopies indicators of a dysregulated alveolar regeneration of COVID-19 patients. The results provide important information on a translational COVID-19 model, which is crucial for its application in future research addressing pathomechanisms of PASC and in testing of prophylactic and therapeutic approaches for this syndrome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Síndrome Post Agudo de COVID-19 , Diferenciación Celular , Células Epiteliales Alveolares , Progresión de la Enfermedad , Mesocricetus
5.
Nat Commun ; 13(1): 6936, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376288

RESUMEN

Human infections with H7N9 avian influenza A virus that emerged in East China in 2013 and caused high morbidity rates were more frequently detected in men than in women over the last five epidemic waves. However, molecular markers associated with poor disease outcomes in men are still unknown. In this study, we systematically analysed sex hormone and cytokine levels in males and females with laboratory-confirmed H7N9 influenza in comparison to H7N9-negative control groups as well as laboratory-confirmed seasonal H1N1/H3N2 influenza cases (n = 369). Multivariable analyses reveal that H7N9-infected men present with considerably reduced testosterone levels associated with a poor outcome compared to non-infected controls. Regression analyses reveal that testosterone levels in H7N9-infected men are negatively associated with the levels of several pro-inflammatory cytokines, such as IL-6 and IL-15. To assess whether there is a causal relationship between low testosterone levels and avian H7N9 influenza infection, we used a mouse model. In male mice, we show that respiratory H7N9 infection leads to a high viral load and inflammatory cytokine response in the testes as well as a reduction in pre-infection plasma testosterone levels. Collectively, these findings suggest that monitoring sex hormone levels may support individualized management for patients with avian influenza infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Masculino , Femenino , Animales , Ratones , Subtipo H3N2 del Virus de la Influenza A , Testosterona , Citocinas , China/epidemiología
6.
EBioMedicine ; 83: 104193, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35930888

RESUMEN

BACKGROUND: Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. METHODS: We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. FINDINGS: Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. INTERPRETATION: Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. FUNDING: German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.


Asunto(s)
COVID-19 , Autopsia , Humanos , ARN Viral/análisis , Reproducibilidad de los Resultados , SARS-CoV-2 , Proteínas Virales
7.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563514

RESUMEN

Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.


Asunto(s)
COVID-19 , Animales , Cilios/metabolismo , Cricetinae , Epitelio , Homeostasis , Mesocricetus , Mucosa Respiratoria/metabolismo , SARS-CoV-2
8.
EBioMedicine ; 79: 103999, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35439679

RESUMEN

BACKGROUND: Neurological symptoms such as cognitive decline and depression contribute substantially to post-COVID-19 syndrome, defined as lasting symptoms several weeks after initial SARS-CoV-2 infection. The pathogenesis is still elusive, which hampers appropriate treatment. Neuroinflammatory responses and neurodegenerative processes may occur in absence of overt neuroinvasion. METHODS: Here we determined whether intranasal SARS-CoV-2 infection in male and female syrian golden hamsters results in persistent brain pathology. Brains 3 (symptomatic) or 14 days (viral clearance) post infection versus mock (n = 10 each) were immunohistochemically analyzed for viral protein, neuroinflammatory response and accumulation of tau, hyperphosphorylated tau and alpha-synuclein protein. FINDINGS: Viral protein in the nasal cavity led to pronounced microglia activation in the olfactory bulb beyond viral clearance. Cortical but not hippocampal neurons accumulated hyperphosphorylated tau and alpha-synuclein, in the absence of overt inflammation and neurodegeneration. Importantly, not all brain regions were affected, which is in line with selective vulnerability. INTERPRETATION: Thus, despite the absence of virus in brain, neurons develop signatures of proteinopathies that may contribute to progressive neuronal dysfunction. Further in depth analysis of this important mechanism is required. FUNDING: Federal Ministry of Health (BMG; ZMV I 1-2520COR501), Federal Ministry of Education and Research (BMBF 01KI1723G), Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20), German Research Foundation (DFG; 398066876/GRK 2485/1), Luxemburgish National Research Fund (FNR, Project Reference: 15686728, EU SC1-PHE-CORONAVIRUS-2020 MANCO, no > 101003651).


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Encéfalo , COVID-19/complicaciones , Cricetinae , Femenino , Humanos , Inflamación , Masculino , Neuronas , Proteínas Virales , alfa-Sinucleína , Síndrome Post Agudo de COVID-19
9.
J Innate Immun ; 14(5): 461-476, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35086104

RESUMEN

Neutrophil extracellular traps (NETs) have been described as a potential trigger of severe COVID-19. NETs are known as extracellular DNA fibers released by neutrophils in response to infection. If the host is unable to balance efficient clearance of NETs by dornases (DNases), detrimental consequences occur. Elevated levels of NETs in COVID-19 patients are associated with higher risk of morbid thrombotic complications. Here, we studied the level of NET markers and DNase activity in a cohort of COVID-19 patients compared to healthy controls. Our data confirmed an increased level of NET markers in the plasma of COVID-19 patients, with a higher level in male compared to female patients. At the same time, there was an increased DNase activity detectable in COVID-19 patients compared to healthy controls. Importantly, there was a negative correlation of DNase activity with the age of male patients. The antimicrobial peptide LL-37, which is known to stabilize NETs against DNase degradation, is embedded in NETs upon severe acute respiratory syndrome coronavirus-2-infection. The LL-37 plasma level correlates with the NET-marker level in male COVID-19 patients, indicating a potential role of LL-37 in the risk of NET-associated thrombosis in male COVID-19 patients by stabilizing NETs against DNase degradation. In conclusion, our data identify two potential risk factors of elderly male patients which may lead to inefficient NET degradation and a subsequently higher risk of NET-associated thrombosis during COVID-19: reduced DNase activity and an increased LL-37 level.


Asunto(s)
COVID-19 , Trampas Extracelulares , Trombosis , Anciano , Desoxirribonucleasa I/metabolismo , Trampas Extracelulares/metabolismo , Femenino , Humanos , Masculino , Neutrófilos/metabolismo
11.
Emerg Microbes Infect ; 10(1): 1807-1818, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34402750

RESUMEN

Male sex was repeatedly identified as a risk factor for death and intensive care admission. However, it is yet unclear whether sex hormones are associated with disease severity in COVID-19 patients. In this study, we analysed sex hormone levels (estradiol and testosterone) of male and female COVID-19 patients (n = 50) admitted to an intensive care unit (ICU) in comparison to control non-COVID-19 patients at the ICU (n = 42), non-COVID-19 patients with the most prevalent comorbidity (coronary heart diseases) present within the COVID-19 cohort (n = 39) and healthy individuals (n = 50). We detected significantly elevated estradiol levels in critically ill male COVID-19 patients compared to all control cohorts. Testosterone levels were significantly reduced in critically ill male COVID-19 patients compared to control cohorts. No statistically significant differences in sex hormone levels were detected in critically ill female COVID-19 patients, albeit similar trends towards elevated estradiol levels were observed. Linear regression analysis revealed that among a broad range of cytokines and chemokines analysed, IFN-γ levels are positively associated with estradiol levels in male and female COVID-19 patients. Furthermore, male COVID-19 patients with elevated estradiol levels were more likely to receive ECMO treatment. Thus, we herein identified that disturbance of sex hormone metabolism might present a hallmark in critically ill male COVID-19 patients.


Asunto(s)
COVID-19/mortalidad , COVID-19/patología , Estradiol/sangre , Testosterona/sangre , Anciano , Anciano de 80 o más Años , COVID-19/sangre , Cuidados Críticos , Enfermedad Crítica , Oxigenación por Membrana Extracorpórea , Femenino , Humanos , Hipogonadismo/patología , Unidades de Cuidados Intensivos , Interferón gamma/sangre , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Distribución por Sexo
12.
Front Immunol ; 12: 698578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149740

RESUMEN

Pregnant women have been carefully observed during the COVID-19 pandemic, as the pregnancy-specific immune adaptation is known to increase the risk for infections. Recent evidence indicates that even though most pregnant have a mild or asymptomatic course, a severe course of COVID-19 and a higher risk of progression to diseases have also been described, along with a heightened risk for pregnancy complications. Yet, vertical transmission of the virus is rare and the possibility of placental SARS-CoV-2 infection as a prerequisite for vertical transmission requires further studies. We here assessed the severity of COVID-19 and onset of neonatal infections in an observational study of women infected with SARS-CoV-2 during pregnancy. Our placental analyses showed a paucity of SARS-CoV-2 viral expression ex vivo in term placentae under acute infection. No viral placental expression was detectable in convalescent pregnant women. Inoculation of placental explants generated from placentas of non-infected women at birth with SARS-CoV-2 in vitro revealed inefficient SARS-CoV-2 replication in different types of placental tissues, which provides a rationale for the low ex vivo viral expression. We further detected specific SARS-CoV-2 T cell responses in pregnant women within a few days upon infection, which was undetectable in cord blood. Our present findings confirm that vertical transmission of SARS-CoV-2 is rare, likely due to the inefficient virus replication in placental tissues. Despite the predominantly benign course of infection in most mothers and negligible risk of vertical transmission, continuous vigilance on the consequences of COVID-19 during pregnancy is required, since the maternal immune activation in response to the SARS-CoV2 infection may have long-term consequences for children's health.


Asunto(s)
COVID-19/inmunología , COVID-19/transmisión , Transmisión Vertical de Enfermedad Infecciosa , Placenta/virología , Complicaciones Infecciosas del Embarazo/inmunología , Adulto , Femenino , Sangre Fetal/inmunología , Humanos , Recién Nacido , Persona de Mediana Edad , Placenta/inmunología , Embarazo , SARS-CoV-2/inmunología , Replicación Viral/fisiología
13.
Viruses ; 13(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918079

RESUMEN

Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions.


Asunto(s)
Acuaporina 1/metabolismo , COVID-19/patología , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Inflamación/patología , Animales , Vasos Sanguíneos/ultraestructura , Modelos Animales de Enfermedad , Inmunohistoquímica , Pulmón/irrigación sanguínea , Pulmón/ultraestructura , Pulmón/virología , Mesocricetus , SARS-CoV-2 , Vasculitis/patología , Vasculitis/virología
14.
Front Immunol ; 12: 640842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912167

RESUMEN

Neutrophil extracellular traps (NETs) have been identified as one pathogenetic trigger in severe COVID-19 cases and therefore well-described animal models to understand the influence of NETs in COVID-19 pathogenesis are needed. SARS-CoV-2 infection causes infection and interstitial pneumonia of varying severity in humans and COVID-19 models. Pulmonary as well as peripheral vascular lesions represent a severe, sometimes fatal, disease complication of unknown pathogenesis in COVID-19 patients. Furthermore, neutrophil extracellular traps (NETs), which are known to contribute to vessel inflammation or endothelial damage, have also been shown as potential driver of COVID-19 in humans. Though most studies in animal models describe the pulmonary lesions characterized by interstitial inflammation, type II pneumocyte hyperplasia, edema, fibrin formation and infiltration of macrophages and neutrophils, detailed pathological description of vascular lesions or NETs in COVID-19 animal models are lacking so far. Here we report different types of pulmonary vascular lesions in the golden Syrian hamster model of COVID-19. Vascular lesions included endothelialitis and vasculitis at 3 and 6 days post infection (dpi), and were almost nearly resolved at 14 dpi. Importantly, virus antigen was present in pulmonary lesions, but lacking in vascular alterations. In good correlation to these data, NETs were detected in the lungs of infected animals at 3 and 6 dpi. Hence, the Syrian hamster seems to represent a useful model to further investigate the role of vascular lesions and NETs in COVID-19 pathogenesis.


Asunto(s)
COVID-19/patología , Modelos Animales de Enfermedad , Trampas Extracelulares/inmunología , Pulmón/patología , SARS-CoV-2/patogenicidad , Vasculitis/patología , Animales , COVID-19/inmunología , COVID-19/virología , Cricetinae , Pulmón/inmunología , Pulmón/virología , Mesocricetus , Vasculitis/inmunología , Proteínas Virales/metabolismo
15.
Front Immunol ; 12: 784141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992602

RESUMEN

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


Asunto(s)
Antinematodos/administración & dosificación , Coinfección/terapia , Filariasis/terapia , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/terapia , Animales , Coinfección/inmunología , Coinfección/parasitología , Coinfección/virología , Modelos Animales de Enfermedad , Femenino , Filariasis/inmunología , Filariasis/parasitología , Filariasis/virología , Filarioidea/inmunología , Humanos , Inmunización Secundaria , Inmunomodulación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/parasitología , Gripe Humana/virología , Mebendazol/administración & dosificación , Mebendazol/análogos & derivados , Ratones , Ácaros/parasitología , Sigmodontinae/parasitología , Vacunación/métodos
16.
Nat Commun ; 11(1): 3459, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651360

RESUMEN

Hepatic amebiasis, predominantly occurring in men, is a focal destruction of the liver due to the invading protozoan Entamoeba histolytica. Classical monocytes as well as testosterone are identified to have important functions for the development of hepatic amebiasis in mice, but a link between testosterone and monocytes has not been identified. Here we show that testosterone treatment induces proinflammatory responses in human and mouse classical monocytes. When treated with 5α-dihydrotestosterone, a strong androgen receptor ligand, human classical monocytes increase CXCL1 production in the presence of Entamoeba histolytica antigens. Moreover, plasma testosterone levels of individuals undergoing transgender procedure correlate positively with the TNF and CXCL1 secretion from their cultured peripheral blood mononuclear cells following lipopolysaccharide stimulation. Finally, testosterone substitution of castrated male mice increases the frequency of TNF/CXCL1-producing classical monocytes during hepatic amebiasis, supporting the hypothesis that the effects of androgens may contribute to an increased risk of developing monocyte-mediated pathologies.


Asunto(s)
Andrógenos/farmacología , Quimiocina CXCL1/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Dihidrotestosterona/farmacología , Entamoeba histolytica/química , Voluntarios Sanos , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
17.
Front Immunol ; 11: 697, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431696

RESUMEN

Influenza A virus pathogenesis may differ between men and women. The 2009 H1N1 influenza pandemic resulted in more documented hospitalizations in women compared to men. In this study, we analyzed the impact of male sex hormones on pandemic 2009 H1N1 influenza A virus disease outcome. In a murine infection model, we could mimic the clinical findings with female mice undergoing severe and even fatal 2009 H1N1 influenza compared to male mice. Treatment of female mice with testosterone could rescue the majority of mice from lethal influenza. Improved disease outcome in testosterone treated female mice upon 2009 H1N1 influenza A virus infection did not affect virus titers in the lung compared to carrier-treated females. However, reduction in IL-1ß cytokine expression levels strongly correlated with reduced lung damage and improved influenza disease outcome in female mice upon testosterone treatment. In contrast, influenza disease outcome was not affected between castrated male mice and non-castrated controls. Here, influenza infection resulted in reduction of testosterone expression in male mice. These findings show that testosterone has protective functions on the influenza infection course. However, 2009 H1N1 influenza viruses seem to have evolved yet unknown mechanisms to reduce testosterone expression in males. These data will support future antiviral strategies to treat influenza taking sex-dependent immunopathologies into consideration.


Asunto(s)
Andrógenos/administración & dosificación , Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Sustancias Protectoras/administración & dosificación , Testosterona/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Factores Sexuales , Resultado del Tratamiento
18.
Front Immunol ; 11: 450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231671

RESUMEN

Deciphering complex virus-host interactions is crucial for pandemic preparedness. In this study, we assessed the impact of recently postulated cellular factors ANP32A and ANP32B of influenza A virus (IAV) species specificity on viral pathogenesis in a genetically modified mouse model. Infection of ANP32A-/- and ANP32A+/+ mice with a seasonal H3N2 IAV or a highly pathogenic H5N1 human isolate did not result in any significant differences in virus tropism, innate immune response or disease outcome. However, infection of ANP32B-/- mice with H3N2 or H5N1 IAV revealed significantly reduced virus loads, inflammatory cytokine response and reduced pathogenicity compared to ANP32B+/+ mice. Genome-wide transcriptome analyses in ANP32B+/+ and ANP32B-/- mice further uncovered novel immune-regulatory pathways that correlate with reduced pathogenicity in the absence of ANP32B. These data show that ANP32B but not ANP32A promotes IAV pathogenesis in mice. Moreover, ANP32B might possess a yet unknown immune-modulatory function during IAV infection. Targeting ANP32B or its regulated pathways might therefore pose a new strategy to combat severe influenza.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Animales , Proteínas de Ciclo Celular/genética , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Células HeLa , Humanos , Tolerancia Inmunológica , Inmunidad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética
19.
Cell Rep ; 31(3): 107549, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320654

RESUMEN

Importin-α adaptor proteins orchestrate dynamic nuclear transport processes involved in cellular homeostasis. Here, we show that importin-α3, one of the main NF-κB transporters, is the most abundantly expressed classical nuclear transport factor in the mammalian respiratory tract. Importin-α3 promoter activity is regulated by TNF-α-induced NF-κB in a concentration-dependent manner. High-level TNF-α-inducing highly pathogenic avian influenza A viruses (HPAIVs) isolated from fatal human cases harboring human-type polymerase signatures (PB2 627K, 701N) significantly downregulate importin-α3 mRNA expression in primary lung cells. Importin-α3 depletion is restored upon back-mutating the HPAIV polymerase into an avian-type signature (PB2 627E, 701D) that can no longer induce high TNF-α levels. Importin-α3-deficient mice show reduced NF-κB-activated antiviral gene expression and increased influenza lethality. Thus, importin-α3 plays a key role in antiviral immunity against influenza. Lifting the bottleneck in importin-α3 availability in the lung might provide a new strategy to combat respiratory virus infections.


Asunto(s)
Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , alfa Carioferinas/biosíntesis , Células A549 , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Regulación hacia Abajo , Femenino , Células HEK293 , Humanos , Gripe Humana/genética , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Vero , alfa Carioferinas/genética , alfa Carioferinas/inmunología
20.
Cell Rep ; 29(8): 2243-2256.e4, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747598

RESUMEN

Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Here, we analyze the impact of helminth infections on the efficacy of vaccinations using Litomosoides sigmodontis-infected mice. Concurrent helminth infection reduces the quantity and quality of antibody responses to vaccination against seasonal influenza. Vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus is drastically impaired in helminth-infected mice. Impaired responses are also observed if vaccinations are performed after clearance of a previous helminth infection, suggesting that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection. Mechanistically, the suppression is associated with a systemic and sustained expansion of interleukin (IL)-10-producing CD4+CD49+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Helmintos/inmunología , Helmintos/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/prevención & control , Linfocitos T/metabolismo , Vacunación/métodos , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/fisiología , Factores de Transcripción Forkhead/genética , Humanos , Inmunomodulación/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Interleucina-10/metabolismo , Ratones , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...