Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727364

RESUMEN

Hydrocarbon-degrading bacteria naturally degrade and remove petroleum pollutants, yet baselines do not currently exist for these critical microorganisms in many regions where the oil and gas industry is active. Furthermore, understanding how a baseline community changes across the seasons and its potential to respond to an oil spill event are prerequisites for predicting their response to elevated hydrocarbon exposures. In this study, 16S rRNA gene-based profiling was used to assess the spatiotemporal variability of baseline bacterioplankton community composition in the Faroe-Shetland Channel (FSC), a deepwater sub-Arctic region where the oil and gas industry has been active for the last 40 years. Over a period of 2 years, we captured the diversity of the bacterioplankton community within distinct water masses (defined by their temperature and salinity) that have a distinct geographic origin (Atlantic or Nordic), depth, and direction of flow. We demonstrate that bacterioplankton communities were significantly different across water samples of contrasting origin and depth. Taxa of known hydrocarbon-degrading bacteria were observed at higher-than-anticipated abundances in water masses originating in the Nordic Seas, suggesting these organisms are sustained by an unconfirmed source of oil input in that region. In the event of an oil spill, our results suggest that the response of these organisms is severely hindered by the low temperatures and nutrient levels that are typical for the FSC.IMPORTANCE Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria. While a significant effort was made to monitor and track the microbial response and degradation of the oil in the water column in the wake of the Deepwater Horizon spill, the lack of baseline data on the microbiology of the Gulf of Mexico confounded scientists' abilities to provide an accurate assessment of how the system responded relative to prespill conditions. This data gap highlights the need for long-term microbial ocean observatories in regions at high risk of oil spills. Here, we provide the first microbiological baseline established for a subarctic region experiencing high oil and gas industry activity, the northeast Atlantic, but with no apparent oil seepage or spillage. We also explore the presence, relative abundances, and seasonal dynamics of indigenous hydrocarbon-degrading communities. These data will advance the development of models to predict the behavior of such organisms in the event of a major oil spill in this region and potentially impact bioremediation strategies by enhancing the activities of these organisms in breaking down the oil.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Hidrocarburos/metabolismo , Microbiota , Regiones Árticas , Océano Atlántico , Bacterias/clasificación , Ecosistema , Variación Genética , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S/genética , Salinidad , Países Escandinavos y Nórdicos , Agua de Mar/microbiología , Temperatura
2.
Nat Commun ; 11(1): 3721, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709916

RESUMEN

The dense overflow waters of the Nordic Seas are an integral link and important diagnostic for the stability of the Atlantic Meridional Overturning Circulation (AMOC). The pathways feeding the overflow remain, however, poorly resolved. Here we use multiple observational platforms and an eddy-resolving ocean model to identify an unrecognized deep flow toward the Faroe Bank Channel. We demonstrate that anticyclonic wind forcing in the Nordic Seas via its regulation of the basin circulation plays a key role in activating an unrecognized overflow path from the Norwegian slope - at which times the overflow is anomalously strong. We further establish that, regardless of upstream pathways, the overflows are mostly carried by a deep jet banked against the eastern slope of the Faroe-Shetland Channel, contrary to previous thinking. This deep flow is thus the primary conduit of overflow water feeding the lower branch of the AMOC via the Faroe Bank Channel.

3.
Nat Commun ; 11(1): 585, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996687

RESUMEN

The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.

4.
Mar Pollut Bull ; 127: 484-504, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29475689

RESUMEN

As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography.


Asunto(s)
Monitoreo del Ambiente/métodos , Modelos Teóricos , Industria del Petróleo y Gas , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Océano Atlántico , Predicción , Humanos , Viento
5.
Mar Pollut Bull ; 119(1): 336-350, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28442198

RESUMEN

This paper presents a novel operational oil spill modelling system based on HF radar currents, implemented in a northwest European shelf sea. The system integrates Open Modal Analysis (OMA), Short Term Prediction algorithms (STPS) and an oil spill model to simulate oil spill trajectories. A set of 18 buoys was used to assess the accuracy of the system for trajectory forecast and to evaluate the benefits of HF radar data compared to the use of currents from a hydrodynamic model (HDM). The results showed that simulated trajectories using OMA currents were more accurate than those obtained using a HDM. After 48h the mean error was reduced by 40%. The forecast skill of the STPS method was valid up to 6h ahead. The analysis performed shows the benefits of HF radar data for operational oil spill modelling, which could be easily implemented in other regions with HF radar coverage.


Asunto(s)
Algoritmos , Radar , Monitoreo del Ambiente , Predicción , Contaminación por Petróleo , Contaminantes Químicos del Agua
6.
Dis Aquat Organ ; 91(3): 189-200, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-21133319

RESUMEN

Infectious salmon anaemia (ISA) is an orthomyxoviral disease, primarily affecting marine-phase farmed Atlantic salmon, which can result in high levels of mortality. ISA first emerged in Norway in the 1980s and subsequently has occurred in Canada, the USA, the Faeroe Islands and Chile. An outbreak occurred in Scotland in 1998-1999, but was eradicated at a cost of over pounds sterling 20M. The epidemiology of a new outbreak of ISA in the Scottish Shetland Islands during 2008-2009 is described. Six sites have been confirmed ISA-positive. Spread of the virus via transport of fish between marine sites, harvest vessels, smolts and wild fish appears to have been of little or no importance, with spread primarily associated with marine water currents. The use of management areas by Marine Scotland to control the event appears to have been effective in restricting spread to a small area. This localised outbreak contrasts with the 1998-1999 outbreak that spread over a wide geographic area with transported fish and harvest vessels. The development and application of industry codes of good practice, good husbandry and biosecurity practices, limited marine site-to-site movement of live fish and improved disinfection of vessels and processing plant waste that occurred subsequent to the 1998-1999 outbreak may explain the localised spread of infection in 2008-2009. Depopulation of confirmed sites has been achieved within 7 wk (mean = 3.7 wk); however, it is likely that subclinical infection persisted undetected for months on at least 1 site. The origin of the 2008-2009 outbreak remains unknown. Potential sources include evolution from a local reservoir of infection or importation. Synchronous fallowing of management areas, with good husbandry and biosecurity, reduces the risk of ISA recurring. Movement of fish between sites in different management areas represents the greatest risk of regional-scale spread, should this occur.


Asunto(s)
Brotes de Enfermedades/veterinaria , Enfermedades de los Peces/epidemiología , Isavirus/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Salmo salar , Animales , Acuicultura , Brotes de Enfermedades/prevención & control , Enfermedades de los Peces/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Escocia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA