Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(25): 27204-27213, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947831

RESUMEN

The densities of eutectic (LiF)2-BeF2 and mixtures of this salt (FLiBe) with LaF3 were measured by dilatometry and by neutron attenuation from 673 K to 1,073 K. Because LaF3 has a limited solubility in FLiBe, it was necessary to determine the amount of LaF3 in solution before the density could be determined. The FLiBe density determination was favorably benchmarked against the literature data. A simple comparison was not available for the LaF3-FLiBe mixtures, so extrapolation of published data was necessary based on analysis using the Molten Salt Thermal Properties Database-Thermochemistry, or MSTDB-TC, developed by the US Department of Energy. Solubilities for LaF3 in FLiBe ranged from 1 to 4 mol % over 673 to 1,073 K. The salt system was heated and cooled over 24 h to evaluate potential changes in composition and hysteresis during the measurement. Changes in the meniscus were observed, and these were included in the correction for density determinations. Salt surface tension may have led to supersaturation of LaF3 in the salt because the solubility curve was nonlinear with respect to the inverse temperature, as would be expected for an ideal system. Surface tension measurements are currently underway to test this hypothesis.

2.
Materials (Basel) ; 17(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276434

RESUMEN

The extensively evaluated and consistent thermodynamic database, the Molten Salt Thermal Properties Database-Thermochemical (MSTDB-TC), was used along with additional thermodynamic values from other sources as examples of ways to examine molten salt reactor (MSR) fuel behavior. Relative stability with respect to halide potential and temperature for likely fuel and fission product components were mapped in Ellingham diagrams for the chloride and fluoride systems. The Ellingham diagrams provide a rich, visual means for identifying halide-forming components in proposed fuel/solvent salt systems. Thermochemical models and values from MSTDB-TC and ancillary sources were used in global equilibrium calculations to provide compositions for a close analysis of the behavior of a possible Molten Chloride Salt Fast Reactor and a Molten Salt Reactor Experiment-type system at high burnup (100 GWd/t). The results illustrated the oxidative nature of burnup in MSRs and provided information about redox behavior and possible control.

3.
Inorg Chem ; 62(45): 18440-18448, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37903427

RESUMEN

A new series of mixed-anion alkali rare earth silicate fluorides with composition Rb2Ln[Si2O6]F (Ln = Y, Eu-Lu) has been synthesized via an alkali chloride/fluoride eutectic flux synthetic route. All synthesized compositions crystallize in the tetragonal space group P42/mnm with a 3D framework consisting of LnO4F2 octahedra, tetrasilicate rings, and 1D channels containing alkali metals. A combination of powder X-ray diffraction, single-crystal X-ray diffraction, and luminescence emission spectroscopy was performed to characterize the reaction products. In addition, density functional theory (DFT) calculations were utilized to calculate the 0 K formation enthalpies of the synthesized phases and of hypothetical trivalent actinide analogues to probe the likelihood of the successful synthesis of such trivalent transuranic containing phases, specifically Am and Cm, in the future.

4.
J Phys Chem B ; 127(27): 6091-6101, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37399503

RESUMEN

Complementary X-ray absorption fine structure (XAFS) spectroscopy and Raman spectroscopy studies were conducted on several UCl3 concentrations in several chloride salt compositions. The samples were 5% UCl3 in LiCl (S1), 5% UCl3 in KCl (S2), 5% UCl3 in LiCl-KCl eutectic (S3), 5% UCl3 in LiCl-KCl eutectic (S4), 50% UCl3 in KCl (S5), and 20% UCl3 in KCl (S6) molar concentrations. Sample S3 had UCl3 sourced from Idaho National Laboratory (INL), and all other samples were UCl3 sourced from TerraPower. The initial compositions were prepared in an inert and oxygen-free atmosphere. XAFS measurements were performed in the atmosphere at a beamline, and Raman spectroscopy was conducted inside a glovebox. Raman spectra were able to confirm initial UCl3. XAFS and later Raman spectra measured, however, did not correctly match the literature and computational spectra for the prepared UCl3 salt. Rather, the data shows some complex uranium oxychloride phases at room temperature that transition into uranium oxides upon heating. Oxygen pollution due to failure of the sealing mechanism can result in oxidation of the UCl3 salts. The oxychlorides present may be both a function of the unknown O2 exposure concentration, depending on the source of the leak and the salt composition. Evidence of this oxychloride claim and its subsequent decomposition is justified in this work.

5.
J Am Chem Soc ; 145(18): 10007-10014, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37097728

RESUMEN

As part of our exploration of plutonium-containing materials as potential nuclear waste forms, we report the first extended structure Pu(V) material and the first Pu(V) borate. Crystals of Na2(PuO2)(BO3) were grown out of mixed hydroxide/boric acid flux and found to crystallize in the orthorhombic space group Cmcm with lattice parameters of a = 9.9067(4) Å, b = 6.5909(2) Å, and c = 6.9724(2) Å. Na2(PuO2)(BO3) adopts a layered structure in which layers of PuO2(BO3)2- are separated by sodium cations. Plutonium is found in a pentagonal bipyramidal coordination environment, with axial Pu(V)-O plutonyl bond lengths of 1.876(3) Å and equatorial Pu-O bond lengths ranging from 2.325(5) to 2.467(3) Å. We find that the Pu(V)-O plutonyl bond lengths are approximately 0.1 Å longer than the reported Pu(VI)-O plutonyl bond lengths and shorter by approximately 0.033 Å than the corresponding U(V) uranyl bond lengths. Raman spectroscopy on single crystals was used to determine the PuO2+ plutonyl stretching and the equatorial breathing mode frequencies of the pentagonal bipyramidal coordination environment around plutonium. Density functional theory calculations were used to calculate the Raman spectrum to help identify the Raman bands at 690 and 630 cm-1 as corresponding to the plutonyl(V) ν1 stretch and the equatorial PuO5 breathing mode, respectively. UV-vis measurements on single crystals indicate semiconducting behavior with a band gap of ∼2.60 eV.

6.
J Am Chem Soc ; 145(1): 465-475, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534937

RESUMEN

A series of quaternary Np(IV) fluorides was synthesized using a mild hydrothermal synthesis approach. The compositions are all of the type NaxMNp6F30, where M = Ti(III), V(III), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Al(III), and Ga(III) and x = 4 for divalent metals, x = 3 for trivalent metals. The compounds all crystallize in the P-3c1 space group and are isotypic with actinide analogues NaxMAn6F30 (An = Ce, U, Th, Pu). Structure data from the neptunium crystals were combined with data from the other actinide analogues to establish the tetravalent, nine-coordinated ionic radii of neptunium (1.030(2) Å), plutonium (1.014(1) Å), and cerium (1.012(2) Å). Radiation damage studies were also carried out on a surrogate material, the cerium analogue Na3AlCe6F30, which indicates that the structure type has low resistance to amorphization. Density functional theory calculations were carried out to compute the band gaps and enthalpies of formation variations among the isotypic cerium and actinide structures to compare the stability of the structures.

7.
Inorg Chem ; 61(29): 11232-11242, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35815496

RESUMEN

A series of alkali metal rare-earth borates were prepared via high-temperature flux crystal growth, and their structures were characterized by single crystal X-ray diffraction (SXRD). Na3Ln(BO3)2 (Ln = La-Lu) crystallize in the monoclinic space group P21/n, the potassium series K3Ln(BO3)2 (Ln = La-Tb) crystallize in the orthorhombic space group Pnma, while the Ln = Dy, Ho, Tm, Yb analogues crystallize in the orthorhombic space group Pnnm. To demonstrate the generality of this synthetic technique, high-entropy oxide (HEO) compositions K3Nd0.15(1)Eu0.20(1)Gd0.20(1)Dy0.22(1)Ho0.23(1)(BO3)2 and K3Nd0.26(1)Eu0.29(1)Ho0.22(1)Tm0.14(1)Yb0.10(1)(BO3)2 were obtained in single crystal form. Radiation damage investigations determined that these borates have a high radiation damage tolerance. To assess whether trivalent actinide analogues of Na3Ln(BO3)2 and K3Ln(BO3)2 would be stable, density functional theory was used to calculate their enthalpies of formation, which are favorable.

8.
J Phys Chem B ; 126(7): 1539-1550, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35138853

RESUMEN

Understanding the local environment of the metal atoms in salt melts is important for modeling the properties of melts and predicting their behavior and thus helping enable the development of technologies such as molten salt reactors and solar-thermal power systems and new approaches to recycling rare-earth metals. Toward that end, we have developed an in situ approach for measuring the coordination of metals in molten salt coupling X-ray absorption spectroscopy (XAS) and Raman spectroscopy. Our approach was demonstrated for two salt mixtures (1.9 and 5 mol % SrCl2 in NaCl, 0.8 and 5 mol % ZrF4 in LiF) at up to 1100 °C. Near-edge (X-ray absorption near-edge structure, XANES) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The EXAFS response was modeled using ab initio FEFF calculations. Strontium's first shell is observed to be coordinated with chlorine (Sr2+-Cl-) and zirconium's first shell is coordinated by fluorine (Zr4+-F-), both having coordination numbers that decrease with increasing temperature. Multiple zirconium complexes are believed to be present in the melt, which may interfere and distort the EXAFS spectra and result in an anomalously low zirconium first shell coordination number. The use of boron nitride (BN) powder as a salt diluent for XAFS measurements was found to not interfere with measurements and thus can be used for investigations of such systems.

9.
ACS Omega ; 7(1): 362-371, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036706

RESUMEN

A methodology to estimate the heat of mixing (Δmix H) for salt liquids in unexplored AkCl-AnCl x /LnCl x (Ak = alkali, An = actinide, Ln = lanthanide) systems is developed. It improves upon previous empirical approaches by eliminating the need for arbitrarily choosing the required composition at maximum short-range ordering, the minimum Δmix H prior to performing the estimation, which avoids the intrinsic ambiguity of that approach. This semiempirical method has computationally reproduced the behavior of NaCl-UCl3 and KCl-UCl3 systems, providing Δmix H values that agree well with the reported measurements within a propagated two standard deviations (2σ). The capability of the approach is demonstrated in its application to the entirety of the AkCl-UCl3 and AkCl-PuCl3 systems, the results from which have facilitated the accurate thermodynamic modeling of these and other AkCl-AnCl3/LnCl3 systems. The resultant assessed Gibbs energy functions and models have been incorporated in the Molten Salt Thermal Properties Database-Thermochemical (MSTDB-TC).

10.
J Phys Chem A ; 125(13): 2791-2799, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764761

RESUMEN

High-throughput computational studies of lanthanide and actinide chemistry with density-functional theory are complicated by the need for Hubbard U corrections, which ensure localization of the f-electrons, but can lead to metastable states. This work presents a systematic investigation of the effects of both Hubbard U value and metastable states on the predicted structural and thermodynamic properties of four uranium compounds central to the field of nuclear fuels: UC, UN, UO2, and UCl3. We also assess the impact of the exchange-hole dipole moment (XDM) dispersion correction on the computed properties. Overall, the choice of Hubbard U value and inclusion of a dispersion correction cause larger variations in the computed geometric properties than result from metastable states. The weak dependence of structure optimization on metastable states should simplify future high-throughput calculations on actinides. Conversely, addition of the dispersion correction is found to offset the repulsion introduced by the Hubbard U term and provides greatly improved agreement with experiment for both cell volumes and heats of formation. The XDM dispersion correction is largely invariant to the chosen U value, making it a robust dispersion correction for actinide systems.

11.
J Phys Chem A ; 124(45): 9487-9495, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33142066

RESUMEN

Single crystals of four new uranyl titanates have been grown via the flux growth method using mixed alkali halide fluxes. Na2(UO2)(TiO)O3 and KNa(UO2)(TiO)O3 have analogous layered structures containing titanyl (TiO2+) units coordinated into TiO5 square pyramids. Cs2(UO2)TiO4 crystallizes in the Cs2USiO6 structure type and is a rare example of a structure containing TiO4 tetrahedra. Cs2(UO2)Ti2O6 crystallizes in a new tunnel structure and contains the also rare TiO5 trigonal bipyramids. DFT studies were performed to understand the bonding in the observed titanate polyhedra. Furthermore, the luminescence properties of the compounds are reported, and leaching studies are reported for Cs2(UO2)Ti2O6.

12.
Chem Commun (Camb) ; 56(66): 9501-9504, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32685942

RESUMEN

The stability of the novel Pu(iv) silicate, Cs2PuSi6O15, was predicted from a combination of crystal chemical reasoning and DFT calculations and confirmed by its synthesis via flux crystal growth. Formation enthalpies of the A2MSi6O15 (A = Na-Cs; M = Ce, Th, U-Pu) compositional family were calculated and indicated the Cs-containing phases should preferentially form in the Cmc21 structure type, consistent with previous experimental findings and the novel phases produced in this work, Cs2PuSi6O15 and Cs2CeSi6O15. The formation enthalpies of a second set of compositions, A2MSi3O9, were also calculated and a comparison between the two compositional families correctly predicted A2MSi6O15 to be on average more stable than A2MSi3O9.

13.
Nat Commun ; 11(1): 2621, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457336

RESUMEN

Triuranium disilicide (U3Si2) fuel with silicon carbide (SiC) composite cladding is being considered as an advanced concept/accident tolerant fuel for light water reactors thus, understanding their chemical compatibility under operational and accident conditions is paramount. Here we provide a comprehensive view of the interaction between U3Si2 and SiC by utilizing density functional theory calculations supported by diffusion couple experiments. From the calculated reaction energies, we demonstrate that triuranium pentasilicide (U3Si5), uranium carbide (UC), U20Si16C3, and uranium silicide (USi) phases can form at the interface. A detailed study of U3Si2 and SiC defect formation energies of the equilibrated materials yielding the interfacial phases U20Si16C3, U3Si5 and UC reveal a thermodynamic driving force for generating defects in both fuel and cladding. The absence of either the U3Si2 or SiC phase, however, causes the defect formation energies in the other phase to be positive, removing the driving force for additional interfacial reactions. The diffusion couple experiments confirm the conclusion with demonstrated restricted formation of U3Si5, UC, and U20Si16C3/USi phases at the interface. The resulting lack of continuous interaction between the U3Si2 and SiC, reflects the diminishing driving force for defect formation, demonstrating the substantial stability of this fuel-cladding system.

14.
Inorg Chem ; 59(9): 6449-6459, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32275404

RESUMEN

A new family of layered alkali uranyl borates, A2(UO2)B2O5 (A = Cs, Rb, K), was synthesized as high quality single crystals via high temperature flux growth methods. At room temperature, the compounds are structurally closely related although they crystallize in different monoclinic space groups, specifically P21/c (Cs), C2/m (Rb), and C2/c (K). At a low temperature (100 K), Cs2(UO2)B2O5 becomes isostructural with K2(UO2)B2O5 as the result of a reversible structure transition by Cs2(UO2)B2O5. The title phases represent the first examples of uranyl borates resulting from high temperature flux growth utilizing alkali halide fluxes. The synthesis, structures, and thermal, optical, and ion exchange properties are reported, and modeling of the atomic structure and disorder of the ion exchanged phases is discussed.

15.
Angew Chem Int Ed Engl ; 59(27): 10836-10841, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32237022

RESUMEN

Most ternary sulfides belonging to the MGaS2 structure-type have been known for many years and are well-characterized. Surprisingly, there have been no reports of the NaGaS2 composition, which contains Na, a monovalent cation slightly larger in size than Li, found in LiGaS2 , a compound known for its non-linear optical properties. Now it is demonstrated for the first time that the unique reversible water absorption in NaGaS2 has resulted in its absence from previous reports owing to difficulties encountered when characterizing this compound by SC XRD. The layered structure of this compound coupled with uniquely easy migration of water molecules between the layers allows for ion exchange with 3d and 5f metal cations. Some cations, for example, Ni2+ , facilitate exfoliation of the layers, providing a facile synthetic route to a new class of 2D chalcogenide materials and furthermore demonstrating that NaGaS2 can readily uptake uranyl species from aqueous solutions.

18.
Inorg Chem ; 59(3): 1905-1916, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31965796

RESUMEN

The effect of lanthanide contraction often results in topological and symmetry changes in compounds with the same compositions as a function of lanthanide cation size. Here we report on the first example of a lanthanide thiophosphate exhibiting a change in the lanthanide cation environment without any topological or symmetry change. A series of new lanthanide thiophosphates with mixed alkali cations were obtained via a flux crystal growth technique using a CsI flux. The obtained compounds Cs2NaLn(PS4)2 (Ln = La-Nd, Sm, and Gd-Ho) were grown as large single crystals (∼0.1-1 mm3) and characterized using single-crystal X-ray diffraction and magnetic susceptibility measurements. As we moved across the series, the structural studies revealed a change in the lanthanide coordination environment depending on the identity of the lanthanide. Although all compounds in the Cs2NaLn(PS4)2 series crystallize in the same space group and have the same Wyckoff atom positions, a slight change in size between Sm3+ and Gd3+ causes a subtle change in coordination number from 9 (for Ln = La-Sm) to 8 (for Ln = Gd-Ho), resulting in two distinct but virtually identical structure types. Ab initio calculations were performed, and the observed experimental trend was corroborated computationally. Magnetic measurements performed on the Cs2NaLn(PS4)2 (Ln = Ce, Pr, Nd, Gd, and Tb) compounds revealed paramagnetic behavior.

19.
Front Chem ; 7: 583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497593

RESUMEN

Single crystals of four new layered uranyl phosphates, including three oxyfluoride-phosphates, were synthesized by molten flux methods using alkali chloride melts, and their structures were determined by single-crystal X-ray diffraction. Cs11[(UO2)12(PO4)3O13] (1) and Rb11[UO2)12(PO4)3O12F2] (2) contain uranyl phosphate layers exhibiting a new sheet topology that can be related to that of ß-U3O8, while Cs4.4K0.6[(UO2)6O4F(PO4)4(UO2)] (3) and Rb4.4K0.6[(UO2)6O4F(PO4)4(UO2)] (4) contain layers of a known isomer of the prominent phosphuranylite topology. The location of the fluorine in structures 2-4 is discussed using bond valence sums. First principles calculations were used to explore why a pure oxide structure is obtained for the Cs containing phase (1) and in contrast an oxyfluoride phase for the Rb containing phase (2). Ion exchange experiments were performed on 1 and 2 and demonstrate the ability of these structures to exchange approximately half of the parent alkali cation with a target alkali cation in an aqueous concentrated salt solution. Optical measurements were performed on 1 and 2 and the UV-vis and fluorescence spectra show features characteristic of the UO 2 2 + uranyl group.

20.
Inorg Chem ; 58(9): 6565-6573, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31013068

RESUMEN

To determine the influence of the lanthanide size on the structures and properties of thiophosphates, a thiophosphate series containing different lanthanides was synthesized via high temperature flux crystal growth and their structures and physical properties analyzed and compared. Layered thiohypophosphates NaLnP2S6 (Ln = La, Ce, Pr) and thiopyrophosphates CsLnP2S7 (Ln = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb, Y) were grown out of an iodide flux using consistent reaction conditions across both series. Under the mildly reducing iodide flux reaction conditions, a rather rare example of phosphorus reduction from the +5 to the +4 oxidation state was observed. Both resultant structure types are based on lanthanide thiophosphate sheets with the alkali cations located between them. Magnetic susceptibility measurements were conducted and revealed Curie-Weiss behavior of the samples, with a Van Vleck contribution in the CsSmP2S7 sample. UV-vis data was found to be in good agreement with the literature, indicating little influence of the sulfide environment on the localized 4f orbitals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...