Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0277718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607205

RESUMEN

Riluzole is the only treatment known to improve survival in patients with Amyotrophic Lateral Sclerosis (ALS). However, oral riluzole efficacy is modest at best, further it is known to have large inter-individual variability of serum concentration and clearance, is formulated as an oral drug in a patient population plagued with dysphagia, and has known systemic side-effects like asthenia (limiting patient compliance) and elevated liver enzymes. In this context, we postulated that continuous intrathecal (IT) infusion of low doses of riluzole could provide consistent elevations of the drug spinal cord (SC) concentrations at or above those achieved with oral dosing, without increasing the risk for adverse events associated with systemic drug exposure or off-target side effects in the brain. We developed a formulation of riluzole for IT delivery and conducted our studies in purpose-bred hound dogs. Our non-GLP studies revealed that IT infusion alone was able to increase SC concentrations above those provided by oral administration, without increasing plasma concentrations. We then conducted two GLP studies that combined IT infusion with oral administration at human equivalent dose, to evaluate SC and brain concentrations of riluzole along with assessments of safety and tolerability. In the 6-week study, the highest IT dose (0.2 mg/hr) was well tolerated by the animals and increased SC concentrations above those achieved with oral riluzole alone, without increasing brain concentrations. In the 6-month study, the highest dose tested (0.4 mg/hr) was not tolerated and yielded SC significantly above those achieved in all previous studies. Our data show the feasibility and safety profile of continuous IT riluzole delivery to the spinal cord, without concurrent elevated liver enzymes, and minimal brain concentrations creating another potential therapeutic route of delivery to be used in isolation or in combination with other therapeutics."


Asunto(s)
Esclerosis Amiotrófica Lateral , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Animales , Perros , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Riluzol/uso terapéutico , Encéfalo , Administración Oral
2.
J Pharmacokinet Pharmacodyn ; 50(6): 507-519, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37131052

RESUMEN

Rare disease drug development is wrought with challenges not the least of which is access to the limited data currently available throughout the rare disease ecosystem where sharing of the available data is not guaranteed. Most pharmaceutical sponsors seeking to develop agents to treat rare diseases will initiate data landscaping efforts to identify various data sources that might be informative with respect to disease prevalence, patient selection and identification, disease progression and any data projecting likelihood of patient response to therapy including any genetic data. Such data are often difficult to come by for highly prevalent, mainstream disease populations let alone for the 8000 rare disease that make up the pooled patient population of rare disease patients. The future of rare disease drug development will hopefully rely on increased data sharing and collaboration among the entire rare disease ecosystem. One path to achieving this outcome has been the development of the rare disease cures accelerator, data analytics platform (RDCA-DAP) funded by the US FDA and operationalized by the Critical Path Institute. FDA intentions were clearly focused on improving the quality of rare disease regulatory applications by sponsors seeking to develop treatment options for various rare disease populations. As this initiative moves into its second year of operations it is envisioned that the increased connectivity to new and diverse data streams and tools will result in solutions that benefit the entire rare disease ecosystem and that the platform becomes a Collaboratory for engagement of this ecosystem that also includes patients and caregivers.


Asunto(s)
Enfermedades Raras , Humanos , Ciencia de los Datos , Progresión de la Enfermedad , Enfermedades Raras/tratamiento farmacológico
3.
Ther Innov Regul Sci ; 56(5): 768-776, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35668316

RESUMEN

Rare diseases impact the lives of an estimated 350 million people worldwide, and yet about 90% of rare diseases remain without an approved treatment. New technologies have become available, such as gene and oligonucleotide therapies, that offer great promise in treating rare diseases. However, progress toward the development of therapies to treat these diseases is hampered by a limited understanding of the course of each rare disease, how changes in disease progression occur and can be effectively measured over time, and challenges in designing and running clinical trials in diseases where the natural history is poorly characterized. Data that could be used to characterize the natural history of each disease has often been collected in various ways, including in electronic health records, patient-report registries, clinical natural history studies, and in past clinical trials. However, each data source contains a limited number of subjects and different data elements, and data is frequently kept proprietary in the hands of the study sponsor rather than shared widely across the rare disease community. The Rare Disease Cures Accelerator-Data and Analytics Platform (RDCA-DAP) is an FDA-funded effort to overcome these persistent challenges. By aggregating data across all rare diseases and making that data available to the community to support understanding of rare disease natural history and inform drug development, RDCA-DAP aims to accelerate the regulatory approval of new therapies. RDCA-DAP curates, standardizes, and tags data across rare disease datasets to make it findable within the database, and contains a built-in analytics platform to help visualize, interpret, and use it to support drug development. RDCA-DAP will coordinate data and tool resources across non-profit, commercial, and for-profit entities to serve a diverse array of rare disease stakeholders that includes academic researchers, drug developers, FDA reviewers and of course patients and their caregivers. Drug development programs utilizing the RDCA-DAP will be able to leverage existing data to support their efforts and reach definitive decisions on the efficacy of their therapeutics more efficiently and more rapidly than ever.


Asunto(s)
Desarrollo de Medicamentos , Enfermedades Raras , Bases de Datos Factuales , Humanos , Enfermedades Raras/tratamiento farmacológico , Sistema de Registros
4.
Sci Rep ; 11(1): 17705, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489498

RESUMEN

Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Dinámicas Mitocondriales/fisiología , Neuronas/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Rotenona/farmacología
5.
Neurobiol Dis ; 149: 105228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359139

RESUMEN

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Variación Genética/fisiología , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Células Cultivadas , Cobre/farmacología , Cobre/uso terapéutico , Relación Dosis-Respuesta a Droga , Drosophila , Variación Genética/efectos de los fármacos , Células HeLa , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Enfermedad de la Neurona Motora/tratamiento farmacológico , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
6.
Exp Neurol ; 323: 113091, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678350

RESUMEN

Neurotrophic factors as candidates for ALS therapeutics have previously been studied in the context of attempts to slow disease progression. For a variety of reasons, clinical trials of neurotrophic factors have failed to show efficacy in ALS patients. Previous studies in Parkinson's Disease (PD) models have shown promise with the use of recombinant adeno-associated virus serotype-2 (rAAV2)-neurturin (NRTN) [AAV2-NRTN] providing neuroprotection and behavioral improvements in preclinical models which subsequently resulted in several clinical studies in patients with PD. Given that this neurotrophic compound has not been studied in the context of ALS, we conducted a study of AAV2-NRTN to assess the preclinical safety, tolerability, biodistribution, and efficacy of this compound in an ALS mouse model. SOD1G93A mice were injected with AAV2-NRTN intraspinally at several doses into the cervical spinal cord at 60 days of age. NRTN expression was noted in motor neurons (MNs) of the targeted cervical spinal cord as well as in their neuromuscular junction projections but not in the lumbar spinal cord, which was not targeted. Neuropathologically, a dose-dependent neuroprotective effect was seen in cervical MNs and neuromuscular junctions that was reflected in a slowing of forelimb grip strength decline. As expected, this neuroprotection was found to be focal and was not seen beyond the immediate region of injection. Overall, there were no increases in morbidity, changes in serum chemistries or blood counts and no cases of drug-related mortality. Because there is a broad clinical experience for this compound, these data provide evidence to support further investigation of AAV2-NRTN as a potential ALS therapeutic.


Asunto(s)
Esclerosis Amiotrófica Lateral , Técnicas de Transferencia de Gen , Neuronas Motoras/metabolismo , Neurturina/administración & dosificación , Animales , Médula Cervical/metabolismo , Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Ratones , Fármacos Neuroprotectores/farmacología , Parvovirinae , Transducción Genética
7.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378968

RESUMEN

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Asunto(s)
Enfermedad de Borna/virología , Virus de la Enfermedad de Borna/fisiología , Trastornos del Conocimiento/etiología , Hipocampo/virología , Memoria a Largo Plazo/fisiología , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Estructurales Virales/metabolismo , Animales , Enfermedad de Borna/metabolismo , Enfermedad de Borna/patología , Células Cultivadas , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/virología , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Mutación , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Fosfoproteínas/genética , Fosforilación , Proteína Quinasa C/genética , Proteínas Estructurales Virales/genética
8.
Cell Metab ; 25(4): 811-822.e4, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28380374

RESUMEN

Cold and other environmental factors induce "browning" of white fat depots-development of beige adipocytes with morphological and functional resemblance to brown fat. Similar to brown fat, beige adipocytes are assumed to express mitochondrial uncoupling protein 1 (UCP1) and are thermogenic due to the UCP1-mediated H+ leak across the inner mitochondrial membrane. However, this assumption has never been tested directly. Herein we patch clamped the inner mitochondrial membrane of beige and brown fat to provide a direct comparison of their thermogenic H+ leak (IH). All inguinal beige adipocytes had robust UCP1-dependent IH comparable to brown fat, but it was about three times less sensitive to purine nucleotide inhibition. Strikingly, only âˆ¼15% of epididymal beige adipocytes had IH, while in the rest UCP1-dependent IH was undetectable. Despite the absence of UCP1 in the majority of epididymal beige adipocytes, these cells employ prominent creatine cycling as a UCP1-independent thermogenic mechanism.


Asunto(s)
Adipocitos Beige/metabolismo , Creatina/metabolismo , Mitocondrias/metabolismo , Técnicas de Placa-Clamp , Proteína Desacopladora 1/metabolismo , Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Epidídimo/metabolismo , Ácidos Grasos/metabolismo , Conducto Inguinal/fisiología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Protones , Nucleótidos de Purina/farmacología , Receptores Adrenérgicos beta 3/metabolismo
9.
Neurobiol Dis ; 85: 11-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459114

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved ß2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although ß2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of ß2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of ß2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of ß-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that ß2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of ß2-agonists are evaluated. In sum, effective, safe and orally-active ß2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Administración Oral , Agonistas de Receptores Adrenérgicos beta 2/efectos adversos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Humanos , Fármacos Neuroprotectores/efectos adversos
10.
J Virol ; 89(11): 5996-6008, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810554

RESUMEN

UNLABELLED: Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE: Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to durably persist in the nucleus of infected cells, notably neurons, might employ a similar mechanism. In this study, we uncovered a novel modality of virus-cell interaction in which BDV phosphoprotein inhibits cellular histone acetylation by interfering with histone acetyltransferase activities. Manipulation of cellular histone acetylation is accompanied by a modulation of viral replication, revealing a perfect adaptation of this "ancient" virus to its host that may favor neuronal persistence and limit cellular damage.


Asunto(s)
Virus de la Enfermedad de Borna/fisiología , Epigénesis Genética , Interacciones Huésped-Patógeno , Neuronas/virología , Fosfoproteínas/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Acetilación , Animales , Células Cultivadas , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley
11.
Nat Commun ; 5: 5181, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25333748

RESUMEN

Mitochondrial dysfunction is a common feature of many neurodegenerative disorders, notably Parkinson's disease. Consequently, agents that protect mitochondria have strong therapeutic potential. Here, we sought to divert the natural strategy used by Borna disease virus (BDV) to replicate in neurons without causing cell death. We show that the BDV X protein has strong axoprotective properties, thereby protecting neurons from degeneration both in tissue culture and in an animal model of Parkinson's disease, even when expressed alone outside of the viral context. We also show that intranasal administration of a cell-permeable peptide derived from the X protein is neuroprotective. We establish that both the X protein and the X-derived peptide act by buffering mitochondrial damage and inducing enhanced mitochondrial filamentation. Our results open the way to novel therapies for neurodegenerative diseases by targeting mitochondrial dynamics and thus preventing the earliest steps of neurodegenerative processes in axons.


Asunto(s)
Mitocondrias/patología , Enfermedades Neurodegenerativas/prevención & control , Enfermedad de Parkinson/prevención & control , Péptidos/química , Proteínas no Estructurales Virales/química , Animales , Axones/metabolismo , Axones/fisiología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Microfluídica , Microscopía Confocal , Microscopía Fluorescente , Enfermedades Neurodegenerativas/virología , Neuronas/metabolismo , Enfermedad de Parkinson/virología , Fosforilación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Rotenona/química
12.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25577667

RESUMEN

BACKGROUND: Recent studies revealed that bipolar disorder may be associated with deficits of neuroplasticity. Additionally, accumulating evidence has implicated alterations of the intracellular signaling molecule protein kinase C (PKC) in mania. METHODS: Using sleep deprivation (SD) as an animal model of mania, this study aimed to examine the possible relationship between PKC and neuroplasticity in mania. Rats were subjected to SD for 72 h and tested behaviorally. In parallel, SD-induced changes in hippocampal cell proliferation were evaluated with bromodeoxyuridine (BrdU) labeling. We then examined the effects of the mood stabilizer lithium, the antipsychotic agent aripiprazole, and the PKC inhibitors chelerythrine and tamoxifen on both behavioral and cell proliferation impairments induced by SD. The antidepressant fluoxetine was used as a negative control. RESULTS: We found that SD triggered the manic-like behaviors such as hyperlocomotion and increased sleep latency, and reduced hippocampal cell proliferation. These alterations were counteracted by an acute administration of lithium and aripiprazole but not of fluoxetine, and only a single administration of aripiprazole increased cell proliferation on its own. Importantly, SD rats exhibited increased levels of phosphorylated synaptosomal-associated protein 25 (SNAP-25) in the hippocampus and prefrontal cortex, suggesting PKC overactivity. Moreover, PKC inhibitors attenuated manic-like behaviors and rescued cell proliferation deficits induced by SD. CONCLUSIONS: Our findings confirm the relevance of SD as a model of mania, and provide evidence that antimanic agents are also able to prevent SD-induced decrease of hippocampal cell proliferation. Furthermore, they emphasize the therapeutic potential of PKC inhibitors, as revealed by their antimanic-like and pro-proliferative properties.


Asunto(s)
Antimaníacos/farmacología , Trastorno Bipolar/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antidepresivos de Segunda Generación/farmacología , Antipsicóticos/uso terapéutico , Aripiprazol , Benzofenantridinas/farmacología , Trastorno Bipolar/fisiopatología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Hipocampo/fisiopatología , Cloruro de Litio/farmacología , Masculino , Piperazinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Proteína Quinasa C/metabolismo , Quinolonas/farmacología , Ratas Sprague-Dawley , Privación de Sueño , Tamoxifeno/farmacología
13.
Peptides ; 31(2): 221-6, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19931330

RESUMEN

NPFF receptors are expressed in several brain regions directly or indirectly involved in cognition and behavior. However, the cognitive effects of the NPFF system have been poorly studied. Therefore, the aim of our study was to analyze the effects of i.c.v. injections of 1 DMe, a stable agonist of NPFF receptors, on behavioral and cognitive performances in C57BL/6J mice. We measured locomotor activity, and an open field with objects was used to estimate the ability of mice to react to spatial changes and to measure short-term retention of information. The Morris navigation task was used to evaluate the acquisition, as well as long-term retention of a hippocampo-dependent spatial memory with a distributed training procedure. Finally, 1 DMe was tested in a contextual fear conditioning paradigm to study its effect on long-term memory of contextual information acquired in a single training session. Altogether, our results demonstrate a small but complex influence of the NPFF system on mouse behavior. 1 DMe injected i.c.v. induces a delayed hyperlocomotion and mildly impairs both short-term and long-term spatial memory processing without affecting contextual fear memory.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Oligopéptidos/farmacología , Receptores de Neuropéptido/agonistas , Animales , Conducta Animal/efectos de los fármacos , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/administración & dosificación , Receptores de Neuropéptido/metabolismo
14.
Neuropharmacology ; 56(3): 615-25, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19059420

RESUMEN

This paper evaluates the involvement of hippocampal ATP-sensitive potassium channels (K(ATP)) in learning and memory. After confirming expression of the Kir6.2 subunit in the CA3 region of C57BL/6J mice, we performed intra-hippocampal pharmacological injections of specific openers and blockers of K(ATP) channels. The opener diazoxide, the blocker tolbutamide, or a mixture of both, were bilaterally injected in the CA3 region before we subjected the animals to a fear conditioning paradigm. Diazoxide strongly impaired contextual memory of mice at both doses tested. This impairment was specifically reversed by co-injecting the blocker tolbutamide. Moreover, we studied the mnemonic abilities of mice deleted for the Kir6.2 subunit. These mice were backcrossed to C57BL/6J mice and tested in two learning paradigms. We found a significant impairment of contextual and tone memories in the Kir6.2 knock-out mice when compared with heterozygous or wild-type animals. Furthermore, these animals were also slightly impaired in a spatial version of the Morris water maze task. Our data suggest a specific involvement of hippocampal K(ATP) Kir6.2/SUR1 channels in memory processes.


Asunto(s)
Hipocampo/fisiología , Canales KATP/agonistas , Canales KATP/antagonistas & inhibidores , Memoria/fisiología , Animales , Diazóxido/farmacología , Miedo , Hipocampo/efectos de los fármacos , Locomoción , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Rectificación Interna/genética , Tolbutamida/farmacología
15.
Neurobiol Learn Mem ; 88(1): 94-103, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17374494

RESUMEN

The hippocampus plays a central role in various forms of complex learning and memory. Opioid peptides and receptors are abundant in the hippocampus. These peptides are co-released with glutamate from mossy fiber- and lateral perforant path-synapses. In this study, we evaluated the functional relevance of the CA3 Kappa opioid receptors (KOR) by transient pharmacological activation or inactivation using single bilateral intrahippocampal microinjections of a selective agonist (U50,488H, 1 or 2.5 nmol), a selective antagonist (nor-binaltorphimine, norBNI 5 nmol) or a mixture of both. C57Bl/6J mice were tested in a fear conditioning paradigm (FC) or in a modified version of the water maze task thought to reveal how flexibly animals can learn and manipulate spatial information (WM). In FC, the agonist (2.5 nmol) decreased context-induced (but not tone-induced) freezing whereas norBNI had no effect. The impairment caused by the agonist U50,488H was blocked by the injection of norBNI, suggesting that overstimulation of CA3-KOR impairs the acquisition and consolidation of contextual fear-related memory. In the WM task, mice were trained repeatedly each day to find a hidden platform. After having reached this goal, the platform position was changed the next day for a new task. U50,488H injection before the last task abolished the previously acquired ability to find rapidly a new platform location, whereas adding norBNI reversed this impairment. Thus, in the mouse, even partial and topographically restricted activation of CA3-KOR entails impairments in two different hippocampus-dependent tasks, indicating functional relevance of the kappa opioid system.


Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Clásico/fisiología , Hipocampo/fisiología , Memoria/fisiología , Receptores Opioides kappa/fisiología , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/administración & dosificación , Análisis de Varianza , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Miedo , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Naltrexona/administración & dosificación , Naltrexona/análogos & derivados , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología
16.
Peptides ; 27(5): 964-72, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16494968

RESUMEN

Neuropeptide FF behaves as an opioid-modulating peptide that seems to be involved in morphine tolerance and physical dependence. Nevertheless, the effects of neuropeptide FF agonists on the rewarding properties of morphine remain unknown. C57BL6 mice were conditioned in an unbiased balanced paradigm of conditioned place preference to study the effect of i.c.v. injections of 1DMe (D-Tyr1(NMe)Phe3]NPFF), a stable agonist of the neuropeptide FF system, on the acquisition of place conditioning by morphine or alcohol (ethanol). Morphine (10 mg/kg, i.p.) or ethanol (2 g/kg, i.p.) induced a significant place preference. Injection of 1DMe (1-20 nmol), given 10 min before the i.p. injection of the reinforcing drug during conditioning, inhibited the rewarding effect of morphine but had no effect on the rewarding effect of ethanol. However, a single injection of 1DMe given just before place preference testing was unable to inhibit the rewarding effects of morphine. By itself, 1DMe was inactive but an aversive effect of this agonist could be evidenced if the experimental procedure was biased. These results suggest that neuropeptide FF, injected during conditioning, should influence the development of rewarding effects of morphine and reinforce the hypothesis of strong inhibitory interactions between neuropeptide FF and opioids.


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Morfina/farmacología , Oligopéptidos/agonistas , Oligopéptidos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Etanol/farmacología , Femenino , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Receptores de Neuropéptido/agonistas , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...