Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Front Immunol ; 14: 1249902, 2023.
Article En | MEDLINE | ID: mdl-37869002

Introduction: Influenza vaccines play a vital role in protecting individuals from influenza virus infection and severe illness. However, current influenza vaccines have suboptimal efficacy, which is further reduced in cases where the vaccine strains do not match the circulating strains. One strategy to enhance the efficacy of influenza vaccines is by extended antigen delivery, thereby mimicking the antigen kinetics of a natural infection. Prolonging antigen availability was shown to quantitatively enhance influenza virus-specific immune responses but how it affects the quality of the induced immune response is unknown. Therefore, the current study aimed to investigate whether prolongation of the delivery of influenza vaccine improves the quality of the induced immune responses over that induced by prime-boost immunization. Methods: Mice were given daily doses of whole inactivated influenza virus vaccine for periods of 14, 21, or 28 days; the control group received prime-boost immunization with a 28 days interval. Results: Our data show that the highest levels of cellular and humoral immune responses were induced by 28 days of extended antigen delivery, followed by 21, and 14 days of delivery, and prime-boost immunization. Moreover, prolonging vaccine delivery also improved the quality of the induced antibody response, as indicated by higher level of high avidity antibodies, a balanced IgG subclass profile, and a higher level of cross-reactive antibodies. Conclusions: Our findings contribute to a better understanding of the immune response to influenza vaccination and have important implications for the design and development of future slow-release influenza vaccines.


Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Mice , Animals , Humans , Vaccination , Immunity, Humoral , Antigens , Vaccines, Inactivated
2.
Biomater Sci ; 11(20): 6790-6800, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37622228

Dissolving microneedle arrays (dMNAs) can be used to deliver vaccines via the intradermal route. Fabrication of dMNAs using centrifugation is the most common preparation method of dMNAs, but it results in a substantial loss of antigens. In order to solve the issue of antigen waste, we engineered an automatic dispensing system for dMNA preparation. Here, we report on the fabrication of influenza whole inactivated virus (WIV) vaccine-loaded dMNAs (WIV dMNAs) by using the automatic dispensing system. Prior to the dispensing process, polydimethylsiloxane (PDMS) moulds were treated with oxygen plasma to increase surface hydrophilicity. WIV dMNAs were prepared with 1% (w/v) trehalose and pullulan (50 : 50 weight ratio). During the dispensing process, reduced pressure was applied to the PDMS mould via a vacuum chamber to make microneedle cavities airless. After producing dMNAs, WIV was quantified and 1.9 µg of WIV was loaded per dMNA, of which 1.3 µg was in the microneedle tips. Compared to the centrifugation method, this automatic dispensing system resulted in a 95% reduction of antigen waste. A hemagglutination assay confirmed that WIV dMNA maintained the stability of the antigen for at least four weeks of storage, even at room temperature or at 37 °C. The WIV dMNAs displayed 100% penetration efficiency in human skin, and 83% of the microneedle volume was dissolved in the skin within 10 minutes. In a vaccination study, mice immunised with WIV dMNAs showed similar IgG levels to those that received WIV intramuscularly. In conclusion, using the automatic dispensing system for dMNA production strongly reduced antigen waste and yielded dMNAs with excellent physical, mechanical, and immunological properties.

3.
Food Funct ; 14(13): 6226-6235, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37345990

Pectins support intestinal barrier function and have anti-diabetic effects, and can differ in the degree of methyl-esterification (DM) and the distribution of non-esterified galacturonic acid residues (DB). The mechanisms and effects of pectin type at different glucose levels are unknown. Pectins with different DM/DB on T84 cells were tested in the presence and absence of the barrier disruptor A23187 at 5 mM and 20 mM glucose. DM19 and DM43 pectins with high DB do rescue the intestinal barrier from disruption. Their effects were as strong as those of the barrier-rescuing anti-diabetic drug metformin, but effects with metformin were restricted to high glucose levels while pectins had effects at both low and high glucose levels. At high glucose levels, DM43HB pectin, which enhanced trans-epithelial electrical resistance, also increased the expressions of claudin1, occludin, and ZO-1. Low and high DM pectins decrease the apical expression of the sodium-glucose co-transporter (SGLT-1) and thereby influence glucose transport, explaining the anti-diabetogenic effect of pectin. Higher DB pectins had the strongest effect. Their impact on SGLT-1 was stronger than that of metformin. Pectin's rescuing effect on barrier disruption and its impact on glucose transportation and anti-diabetogenic effects depend on both the DB and the DM of pectins.


Pectins , Symporters , Esterification , Pectins/chemistry , Epithelial Cells/metabolism , Glucose , Symporters/metabolism , Sodium/metabolism
4.
Pharmaceutics ; 15(2)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36839998

Although vaccination is still considered to be the cornerstone of public health care, the increase in vaccination coverage has stagnated for many diseases. Most of these vaccines require two or three doses to be administered across several months or years. Single-injection vaccine formulations are an effective method to overcome the logistical barrier to immunization that is posed by these multiple-injection schedules. Here, we developed subcutaneously (s.c.) injectable microspheres with a sustained release of the model antigen bovine serum albumin (BSA). The microspheres were composed of blends of two novel biodegradable multi-block copolymers consisting of amorphous, hydrophilic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) blocks and semi-crystalline poly(dioxanone) (PDO) blocks of different block sizes. In vitro studies demonstrated that the release of BSA could be tailored over a period of approximately four to nine weeks by changing the blend ratio of both polymers. Moreover, it was found that BSA remained structurally intact during release. Microspheres exhibiting sustained release of BSA for six weeks were selected for the in vivo study in mice. The induced BSA-specific IgG antibody titers increased up to four weeks after administration and were of the same magnitude as found in mice that received a priming and a booster dose of BSA in phosphate-buffered saline (PBS). Determination of the BSA concentration in plasma showed that in vivo release probably took place up to at least four weeks, although plasma concentrations peaked already one week after administration. The sustained-release microspheres might be a viable alternative to the conventional prime-boost immunization schedule, but a clinically relevant antigen should be incorporated to assess the full potential of these microspheres in practice.

5.
Carbohydr Polym ; 303: 120444, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36657837

Citrus pectins have demonstrated health benefits through direct interaction with Toll-like receptor 2. Methyl-ester distribution patterns over the homogalacturonan were found to contribute to such immunomodulatory activity, therefore molecular interactions with TLR2 were studied. Molecular-docking analysis was performed using four GalA-heptamers, GalA7Me0, GalA7Me1,6, GalA7Me1,7 and GalA7Me2,5. The molecular relations were measured in various possible conformations. Furthermore, commercial citrus pectins were characterized by enzymatic fingerprinting using polygalacturonase and pectin-lyase to determine their methyl-ester distribution patterns. The response of 12 structurally different pectic polymers on TLR2 binding and the molecular docking with four pectic oligomers clearly demonstrated interactions with human-TLR2 in a structure-dependent way, where blocks of (non)methyl-esterified GalA were shown to inhibit TLR2/1 dimerization. Our results may be used to understand the immunomodulatory effects of certain pectins via TLR2. Knowledge of how pectins with certain methyl-ester distribution patterns bind to TLRs may lead to tailored pectins to prevent inflammation.


Esters , Toll-Like Receptor 2 , Humans , Molecular Docking Simulation , Molecular Conformation , Pectins/chemistry
6.
Clin Infect Dis ; 76(3): e533-e536, 2023 02 08.
Article En | MEDLINE | ID: mdl-35723273

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous boosters after Ad26.COV2.S-priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.


Ad26COVS1 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Health Personnel , Immunity
7.
Food Funct ; 13(12): 6510-6521, 2022 Jun 20.
Article En | MEDLINE | ID: mdl-35642586

Galacto-oligosaccharides (GOS) and 2'-fucosyllactose (2'-FL) are non-digestible carbohydrates (NDCs) that are often added to infant formula to replace the functionalities of human milk oligosaccharides (HMOs). It is not known if combining GOS and 2'-FL will affect their fermentation kinetics and subsequent immune-modulatory effects such as AhR-receptor stimulation. Here, we used an in vitro set-up for the fermentation of 2'-FL and GOS, either individually or combined, by fecal microbiota of 8-week-old infants. We found that GOS was fermented two times faster by the infant fecal microbiota when combined with 2'-FL, while the combination of GOS and 2'-FL did not result in a complete degradation of 2'-FL. Fermentation of both GOS and 2'-FL increased the relative abundance of Bifidobacterium, which coincided with the production of acetate and lactate. Digesta of the fermentations influenced dendritic cell cytokine secretion differently under normal conditions and in the presence of the AhR-receptor blocker CH223191. We show that, combining GOS and 2'-FL accelerates GOS fermentation by the infant fecal microbiota of 8-week-old infants. In addition, we show that the fermentation digesta of GOS and 2'-FL, either fermented individually or combined, can attenuate DC cytokine responses in a similar and in an AhR-receptor dependent way.


Cytokines , Microbiota , Cytokines/metabolism , Dendritic Cells/metabolism , Feces/microbiology , Fermentation , Galactose/metabolism , Humans , Infant , Kinetics , Milk, Human/metabolism , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Trisaccharides
8.
Carbohydr Polym ; 277: 118813, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34893230

Citrus pectins were studied by enzymatic fingerprinting using a simultaneous enzyme treatment with endo-polygalacturonase (endo-PG) from Kluyveromyces fragilis and pectin lyase (PL) from Aspergillus niger to reveal the methyl-ester distribution patterns over the pectin backbone. Using HILIC-MS combined with HPAEC enabled the separation and identification of the diagnostic oligomers released. Structural information on the pectins was provided by using novel descriptive parameters such as degree of blockiness of methyl-esterified oligomers by PG (DBPGme) and degree of blockiness of methyl-esterified oligomers by PL (DBPLme). This approach enabled us to clearly differentiate citrus pectins with various methyl-esterification patterns. The simultaneous use of PG and PL showed additional information, which is not revealed in digests using PG or PL alone. This approach can be valuable to differentiate pectins having the same DM and to get specific structural information on pectins and therefore to be able to better predict their physical and biochemical functionalities.


Pectins/metabolism , Polygalacturonase/metabolism , Polysaccharide-Lyases/metabolism , Aspergillus niger/enzymology , Kluyveromyces/enzymology , Pectins/analysis
9.
Food Funct ; 12(24): 12513-12525, 2021 Dec 13.
Article En | MEDLINE | ID: mdl-34811557

Human milk oligosaccharides (hMOs) are unique bioactive components in human milk. 3-Fucosyllactose (3-FL) is an abundantly present hMO that can be produced in sufficient amounts to allow application in infant formula. Lacto-N-triaose II (LNT2) can be obtained by acid hydrolysis of lacto-N-neotetraose (LNnT). Both 3-FL and LNT2 have been shown to have health benefits, but their impact on infant microbiota composition and microbial metabolic products such as short-chain fatty acids (SCFAs) is unknown. To gain more insight in fermentability, we performed in vitro fermentation studies of 3-FL and LNT2 using pooled fecal microbiota from 12-week-old infants. The commonly investigated galacto-oligosaccharides (GOS)/inulin (9 : 1) served as control. Compared to GOS/inulin, we observed a delayed utilization of 3-FL, which was utilized at 60.3% after 36 h of fermentation, and induced the gradual production of acetic acid and lactic acid. 3-FL specifically enriched bacteria of Bacteroides and Enterococcus genus. LNT2 was fermented much faster. After 14 h of fermentation, 90.1% was already utilized, and production of acetic acid, succinic acid, lactic acid and butyric acid was observed. LNT2 specifically increased the abundance of Collinsella, as well as Bifidobacterium. The GOS present in the GOS/inulin mixture was completely fermented after 14 h, while for inulin, only low DP was rapidly utilized after 14 h. To determine whether the fermentation might lead to enhanced colonization of commensal bacteria to gut epithelial cells, we investigated adhesion of the commensal Lactobacillus plantarum WCFS1 to Caco-2 cells. The fermentation digesta of LNT2 collected after 14 h, 24 h, and 36 h, and GOS/inulin after 24 h of fermentation significantly increased the adhesion of L. plantarum WCFS1 to Caco-2 cells, while 3-FL had no such effect. Our findings illustrate that fermentation of hMOs is very structure-dependent and different from the commonly applied GOS/inulin, which might lead to differential potencies to stimulate adhesion of commensal cells to gut epithelium and consequent microbial colonization. This knowledge might contribute to the design of tailored infant formulas containing specific hMO molecules to meet the need of infants during the transition from breastfeeding to formula.


Epithelial Cells/metabolism , Gastrointestinal Microbiome/physiology , Inulin/metabolism , Lactobacillus plantarum/metabolism , Milk, Human/metabolism , Oligosaccharides/metabolism , Trisaccharides/metabolism , Feces , Female , Fermentation , Humans , Infant
10.
Mol Nutr Food Res ; 65(19): e2100346, 2021 10.
Article En | MEDLINE | ID: mdl-34369649

INTRODUCTION: Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS: Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION: Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.


Colitis/drug therapy , Enterobacteriaceae Infections/drug therapy , Pectins/chemistry , Pectins/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cecum/drug effects , Cecum/metabolism , Citrobacter rodentium/pathogenicity , Citrus sinensis/chemistry , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Enterobacteriaceae Infections/pathology , Esters/chemistry , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Mice, Inbred C57BL , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/pathology
11.
Food Funct ; 12(19): 9018-9029, 2021 Oct 04.
Article En | MEDLINE | ID: mdl-34382992

Scope: Non-digestible carbohydrates (NDCs) such as native chicory inulin and 2'-fucosyllactose (2'-FL) are added to infant formula to mimic some of the human milk oligosaccharide (HMO) functions. It is unknown whether combining inulin and 2'-FL influences their fermentation kinetics and whether the immune-modulatory effects of these NDCs are different under normal and inflammatory-prone Th2-polarizing conditions. Methods and results: We investigated the in vitro fermentation of 2'-FL and native chicory inulin, fermented individually and combined, using fecal inocula of 8-week-old infants. Native inulin was fermented in a size-dependent fashion and expedited the fermentation of 2'-FL. Fermentation of both native inulin and 2'FL increased the relative abundance of Bifidobacterium, which coincided with the production of acetate and lactate. The fermentation digesta of all fermentations differentially influenced both dendritic cell and T-cell cytokine responses under normal culture conditions or in presence of the Th2-polarizing cytokines IL-33 and TSLP, with the most pronounced effect for IL-1ß in the presence of TSLP. Conclusions: Our findings show that native inulin can expedite the fermentation of 2'-FL by infant fecal microbiota and that these NDC fermentation digesta have different effects under normal and Th2-polarizing conditions, indicating that infants with different immune backgrounds might benefit from tailored NDC formulations.


Cichorium intybus , Infant Formula , Inulin/pharmacology , Microbiota/drug effects , Feces/microbiology , Fermentation , Functional Food , Gastrointestinal Microbiome/drug effects , Humans , Infant, Newborn , Inulin/chemistry , T-Lymphocytes/metabolism , Trisaccharides/metabolism
12.
Mol Nutr Food Res ; 65(18): e2100222, 2021 09.
Article En | MEDLINE | ID: mdl-34268870

SCOPE: Intestinal mucositis is a common side effect of the chemotherapeutic agent doxorubicin, which is characterized by severe Toll-like receptor (TLR) 2-mediated inflammation. The dietary fiber pectin is shown to prevent this intestinal inflammation through direct inhibition of TLR2 in a microbiota-independent manner. Recent in vitro studies show that inhibition of TLR2 is determined by the number and distribution of methyl-esters of pectins. Therefore, it is hypothesized that the degree of methyl-esterification (DM) and the degree of blockiness (DB) of pectins determine attenuating efficacy on doxorubicin-induced intestinal mucositis. METHODS AND RESULTS: Four structurally different pectins that differed in DM and DB are tested on inhibitory effects on murine TLR2 in vitro, and on doxorubicin-induced intestinal mucositis in mice. These data demonstrate that low DM pectins or intermediate DM pectins with high DB have the strongest inhibitory impact on murine TLR2-1 and the strongest attenuating effect on TLR2-induced apoptosis and peritonitis. Intermediate DM pectin with a low DB is, however, also effective in preventing the induction of doxorubicin-induced intestinal damage. CONCLUSION: These pectin structures with stronger TLR2-inhibiting properties may prevent the development of doxorubicin-induced intestinal damage in patients undergoing chemotherapeutic treatment with doxorubicin.


Doxorubicin/adverse effects , Intestine, Small/drug effects , Mucositis/chemically induced , Mucositis/drug therapy , Pectins/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antibiotics, Antineoplastic/adverse effects , Apoptosis/drug effects , Cell Line , Dose-Response Relationship, Drug , Esterification , Female , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/pathology , Intestinal Mucosa/drug effects , Intestine, Small/pathology , Mice, Inbred C57BL , Mucositis/pathology , Pectins/administration & dosage , Pectins/chemistry , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/pathology , Structure-Activity Relationship , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/metabolism
13.
Food Funct ; 12(17): 8100-8119, 2021 Sep 07.
Article En | MEDLINE | ID: mdl-34286788

Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.


Bacterial Adhesion , Epithelial Cells/metabolism , Intestines/metabolism , Inulin/metabolism , Milk, Human/metabolism , Oligosaccharides/metabolism , Pectins/metabolism , Caco-2 Cells , Epithelial Cells/microbiology , Escherichia coli/physiology , Gene Expression Regulation , Glycosylation , Humans , Intestines/microbiology , Klebsiella pneumoniae/physiology , Milk, Human/chemistry , Salmonella enterica/physiology
14.
Biomaterials ; 266: 120460, 2021 01.
Article En | MEDLINE | ID: mdl-33099059

Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.


Diabetes Mellitus, Experimental , Graft Survival , Islets of Langerhans Transplantation , Pectins , Toll-Like Receptor 2 , Alginates , Animals , Capsules , Diabetes Mellitus, Experimental/therapy , Heterografts , Immunity , Mice , Polymers , Rats
15.
Carbohydr Polym ; 249: 116863, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32933690

Insufficient intake of dietary fibers in Western societies is considered a major contributing factor in the high incidence rates of diabetes. The dietary fiber pectin has been suggested to be beneficial for management of both Diabetes Type 1 and Type 2, but mechanisms and effects of pectin on insulin producing pancreatic ß-cells are unknown. Our study aimed to determine the effects of lemon pectins with different degree of methyl-esterification (DM) on ß-cells under oxidative (streptozotocin) and inflammatory (cytokine) stress and to elucidate the underlying rescuing mechanisms, including effects on galectin-3. We found that specific pectins had rescuing effects on toxin and cytokine induced stress on ß-cells but effects depended on the pectin concentration and DM-value. Protection was more pronounced with low DM5 pectin and was enhanced with higher pectin-concentrations. Our findings show that specific pectins might prevent diabetes by making insulin producing ß-cells less susceptible for stress.


Diabetes Mellitus, Experimental/complications , Galectin 3/metabolism , Inflammation/drug therapy , Insulin-Secreting Cells/drug effects , Oxidative Stress/drug effects , Pectins/pharmacology , Protective Agents/pharmacology , Animals , Esterification , Humans , Inflammation/etiology , Inflammation/pathology , Insulin-Secreting Cells/pathology , Methylation , Mice , Pectins/chemistry
16.
Exp Mol Med ; 52(9): 1364-1376, 2020 09.
Article En | MEDLINE | ID: mdl-32908213

Pectins are dietary fibers with different structural characteristics. Specific pectin structures can influence the gastrointestinal immune barrier by directly interacting with immune cells or by impacting the intestinal microbiota. The impact of pectin strongly depends on the specific structural characteristics of pectin; for example, the degree of methyl-esterification, acetylation and rhamnogalacturonan I or rhamnogalacturonan II neutral side chains. Here, we review the interactions of specific pectin structures with the gastrointestinal immune barrier. The effects of pectin include strengthening the mucus layer, enhancing epithelial integrity, and activating or inhibiting dendritic cell and macrophage responses. The direct interaction of pectins with the gastrointestinal immune barrier may be governed through pattern recognition receptors, such as Toll-like receptors 2 and 4 or Galectin-3. In addition, specific pectins can stimulate the diversity and abundance of beneficial microbial communities. Furthermore, the gastrointestinal immune barrier may be enhanced by short-chain fatty acids. Moreover, pectins can enhance the intestinal immune barrier by favoring the adhesion of commensal bacteria and inhibiting the adhesion of pathogens to epithelial cells. Current data illustrate that pectin may be a powerful dietary fiber to manage and prevent several inflammatory conditions, but additional human studies with pectin molecules with well-defined structures are urgently needed.


Dietary Fiber/metabolism , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Pectins/chemistry , Pectins/metabolism , Animals , Biodiversity , Gastrointestinal Microbiome/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immunity, Innate , Peyer's Patches/immunology , Peyer's Patches/metabolism , Protein Binding , Receptors, Pattern Recognition/metabolism , Structure-Activity Relationship
17.
Food Funct ; 11(9): 7427-7432, 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32902547

High intake of dietary fibres and calcium has been correlated to a lower frequency of Western disease such as allergy, asthma and obesity. How the combined higher intake of dietary fibres and calcium reduces the incidence of these diseases is unknown. Dietary fibre pectin can interact with Toll-like receptor (TLR) 2 and calcium in a degree of methyl-esterification (DM)-dependent manner. Low DM pectins interact stronger with TLR2 than high DM pectins. Since low DM pectin are known to bind calcium strongly, we investigated how calcium influences the DM-dependent impact of pectins on TLR2 signalling. We tested TLR2 activating, inhibiting and binding properties of pectins with DM18, DM52 and DM69 under 0 mM, 1 mM and 10 mM calcium conditions. None of the pectins activated TLR2, but pectins inhibited TLR2. Under 0 mM calcium conditions, especially DM18 and DM52 strongly inhibited TLR2 and bound strongly to TLR2. Addition of 1 and 10 mM calcium to these pectins reduced TLR2 inhibition and TLR2 binding. Our study shows that calcium reduces inhibition of TLR2 by low and intermediate DM pectins, but calcium has lower impact on TLR2 inhibition by high DM pectins. Calcium may therefore beneficially influence the impact of pectin on TLR2 signalling and contribute to an improved intestinal barrier function. A combined higher intake of pectin and calcium may therefore contribute to a lower incidence of Western diseases.


Calcium, Dietary/metabolism , Pectins/metabolism , Toll-Like Receptor 2/metabolism , Dietary Fiber/analysis , Dietary Fiber/metabolism , Esterification , HEK293 Cells , Humans , Pectins/chemistry , Signal Transduction , Toll-Like Receptor 2/genetics
18.
Sci Rep ; 10(1): 1690, 2020 02 03.
Article En | MEDLINE | ID: mdl-32015377

Dietary fibers have been shown to exert immune effects via interaction with pattern recognition receptors (PRR) such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors. Pectin is a dietary fiber that interacts with PRR depending on its chemical structure. Papaya pectin retains different chemical structures at different ripening stages. How this influence PRR signaling is unknown. The aim of this work was to determine how ripening influences pectin structures and their ability to interact with TLR2, 3, 4, 5 and 9, and NOD1 and 2. It was evaluated the interaction of the water-soluble fractions rich in pectin extracted from unripe to ripe papayas. The pectin extracted from ripe papayas activated all the TLR and, to a lesser extent, the NOD receptors. The pectin extracted from unripe papayas also activated TLR2, 4 and 5 but inhibited the activation of TLR3 and 9. The differences in pectin structures are the higher methyl esterification and smaller galacturonan chains of pectin from ripe papayas. Our finding might lead to selection of ripening stages for tailored modulation of PRR to support or attenuate immunity.


Carica/metabolism , Pectins/metabolism , Receptors, Immunologic/metabolism , CARD Signaling Adaptor Proteins/metabolism , Dietary Fiber/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction/physiology , Toll-Like Receptors/metabolism
19.
Front Immunol ; 9: 383, 2018.
Article En | MEDLINE | ID: mdl-29545800

Dietary carbohydrate fibers are known to prevent immunological diseases common in Western countries such as allergy and asthma but the underlying mechanisms are largely unknown. Until now beneficial effects of dietary fibers are mainly attributed to fermentation products of the fibers such as anti-inflammatory short-chain fatty acids (SCFAs). Here, we found and present a new mechanism by which dietary fibers can be anti-inflammatory: a commonly consumed fiber, pectin, blocks innate immune receptors. We show that pectin binds and inhibits, toll-like receptor 2 (TLR2) and specifically inhibits the proinflammatory TLR2-TLR1 pathway while the tolerogenic TLR2-TLR6 pathway remains unaltered. This effect is most pronounced with pectins having a low degree of methyl esterification (DM). Low-DM pectin interacts with TLR2 through electrostatic forces between non-esterified galacturonic acids on the pectin and positive charges on the TLR2 ectodomain, as confirmed by testing pectin binding on mutated TLR2. The anti-inflammatory effect of low-DM pectins was first studied in human dendritic cells and mouse macrophages in vitro and was subsequently tested in vivo in TLR2-dependent ileitis in a mouse model. In these mice, ileitis was prevented by pectin administration. Protective effects were shown to be TLR2-TLR1 dependent and independent of the SCFAs produced by the gut microbiota. These data suggest that low-DM pectins as a source of dietary fiber can reduce inflammation through direct interaction with TLR2-TLR1 receptors.


Dietary Fiber/therapeutic use , Ileitis/therapy , Pectins/therapeutic use , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Animals , Diet, Western , Disease Models, Animal , Doxorubicin , Esterification , Fatty Acids, Volatile , Female , HEK293 Cells , Hexuronic Acids/chemistry , Humans , Ileitis/chemically induced , Mice , Mice, Inbred C57BL , Pectins/chemistry , Signal Transduction/drug effects , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics
...