Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(12): e3001730, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469518

RESUMEN

The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila melanogaster/genética , Sinapsis/fisiología , Envejecimiento/fisiología , Encéfalo/fisiología , Plasticidad Neuronal/fisiología
2.
Cell Rep ; 35(2): 108941, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852845

RESUMEN

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Lisina/análogos & derivados , Mitocondrias/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Espermidina/farmacología , Administración Oral , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Respiración de la Célula/genética , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Locomoción/fisiología , Lisina/metabolismo , Memoria/fisiología , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Animales , Neuronas/metabolismo , Neuronas/patología , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Espermidina/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
3.
Curr Biol ; 30(6): 1077-1091.e5, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142702

RESUMEN

Sleep is universal across species and essential for quality of life and health, as evidenced by the consequences of sleep loss. Sleep might homeostatically normalize synaptic gains made over wake states in order to reset information processing and storage and support learning, and sleep-associated synaptic (ultra)structural changes have been demonstrated recently. However, causal relationships between the molecular and (ultra)structural status of synapses, sleep homeostatic regulation, and learning processes have yet to be established. We show here that the status of the presynaptic active zone can directly control sleep in Drosophila. Short sleep mutants showed a brain-wide upregulation of core presynaptic scaffold proteins and release factors. Increasing the gene copy number of ELKS-family scaffold master organizer Bruchpilot (BRP) not only mimicked changes in the active zone scaffold and release proteins but importantly provoked sleep in a dosage-dependent manner, qualitatively and quantitatively reminiscent of sleep deprivation effects. Conversely, reducing the brp copy number decreased sleep in short sleep mutant backgrounds, suggesting a specific role of the active zone plasticity in homeostatic sleep regulation. Finally, elimination of BRP specifically in the sleep-promoting R2 neurons of 4xBRP animals partially restored sleep patterns and rescued learning deficits. Our results suggest that the presynaptic active zone plasticity driven by BRP operates as a sleep homeostatic actuator that also restricts periods of effective learning.


Asunto(s)
Drosophila melanogaster/fisiología , Plasticidad Neuronal , Sueño/fisiología , Sinapsis/fisiología , Animales , Femenino , Homeostasis/fisiología , Aprendizaje , Neuronas/fisiología
4.
J Neurogenet ; 34(1): 106-114, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31980003

RESUMEN

The cellular analysis of mushroom body (MB)-dependent memory forming processes is far advanced, whereas, the molecular and physiological understanding of their synaptic basis lags behind. Recent analysis of the Drosophila olfactory system showed that Unc13A, a member of the M(Unc13) release factor family, promotes a phasic, high release probability component, while Unc13B supports a slower tonic release component, reflecting their different nanoscopic positioning within individual active zones. We here use STED super-resolution microscopy of MB lobe synapses to show that Unc13A clusters closer to the active zone centre than Unc13B. Unc13A specifically supported phasic transmission and short-term plasticity of Kenyon cell:output neuron synapses, measured by combining electrophysiological recordings of output neurons with optogenetic stimulation. Knockdown of unc13A within Kenyon cells provoked drastic deficits of olfactory aversive short-term and anaesthesia-sensitive middle-term memory. Knockdown of unc13B provoked milder memory deficits. Thus, a low frequency domain transmission component is probably crucial for the proper representation of memory-associated activity patterns, consistent with sparse Kenyon cell activation during memory acquisition and retrieval. Notably, Unc13A/B ratios appeared highly diversified across MB lobes, leaving room for an interplay of activity components in memory encoding and retrieval.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Memoria/fisiología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Percepción Olfatoria/fisiología , Animales , Drosophila , Femenino , Isoformas de Proteínas , Sinapsis/metabolismo
5.
Nat Commun ; 10(1): 1085, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842428

RESUMEN

Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Femenino , Masculino , Proteínas de la Membrana/genética , Memoria a Corto Plazo/fisiología , Modelos Animales , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/metabolismo , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
6.
Nat Commun ; 10(1): 651, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783116

RESUMEN

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Flavonoides/farmacología , Longevidad/efectos de los fármacos , Envejecimiento/fisiología , Angelica/química , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Muerte Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Flavonoides/administración & dosificación , Factores de Transcripción GATA/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Longevidad/fisiología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Medicina Tradicional de Asia Oriental , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/tratamiento farmacológico , Extractos Vegetales/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Sirolimus/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA