Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Hepatol ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38821361

BACKGROUND & AIMS: After pediatric liver transplantation (pLT), children undergo life-long immunosuppression since reliable biomarkers for the assessment of rejection probability are scarce. In the multicentre (n=7) prospective clinical cohort "ChilSFree" study, we aimed to characterize longitudinal dynamics of soluble and cellular immune mediators during the first year after pLT and identify early biomarkers associated with outcome. METHODS: Using paired Luminex-based multiplex technique and flow cytometry, we characterized longitudinal dynamics of soluble immune mediators (SIM, n=50) and immune cells in the blood of 244 patients at 8 visits over one year: before, 7/14/21/28 days, 3/6/12 months after pLT. RESULTS: The unsupervised clustering of patients based on SIM profiles revealed 6 unique SIM signatures associated with clinical outcome. From 3 signatures linked to improved outcome, one was associated with one-year-long rejection-free survival and stable graft function and was characterized by low levels of pro-inflammatory (CXCL8/9/10/12, CCL7, SCGF-ß, sICAM-1), high levels of regenerative (SCF, TNF-ß), and pro-apoptotic (TRAIL) SIM (all, p<0.001, fold change >100). Of note, this SIM signature appeared two weeks after pLT and remained stable over the entire year, pointing towards its potential as a novel early biomarker for minimizing or weaning immunosuppression. In the blood of these patients, a higher frequency of CD56bright NK cells (p<0.01), a known hallmark also associated with operationally tolerant pLT patients, was detected. The concordance of the model for prediction of rejection based on identified SIM signatures was 0.715, and 0.795, in combination with living-related transplantation as co-variate, respectively. CONCLUSIONS: SIM blood signatures may enable the non-invasive and early assessment of rejection risks in the first year after pLT, paving the way to improved therapeutic options.

2.
Pediatr Res ; 95(4): 949-958, 2024 Mar.
Article En | MEDLINE | ID: mdl-37679518

BACKGROUND: Sudden infant death syndrome (SIDS) has been considered to be triggered by a combination of underlying immune dysregulation and infections. The thymus is a crucial lymphatic organ responsible for T cell development in infancy. We hypothesized that an altered thymic immune status may be detectable by intrathymic cytokine profiling in SIDS. METHODS: 27 cytokines in protein lysates of thymus tissue and thymus weights were assessed in 26 SIDS cases and 16 infants who died of other reasons. RESULTS: Seventeen out of 27 cytokines were increased in thymic tissue of SIDS compared to controls without infections, and the most significant discrepancy was in infants younger than 20 weeks. The thymic cytokine profiles in SIDS cases were similar to those in controls with severe infection; however, the magnitude of the cytokine concentration elevation in SIDS was less pronounced, indicating sub-clinical infections in SIDS. In contrast to SIDS, intrathymic cytokine concentrations and thymus weight were increased with age in control children. CONCLUSIONS: Elevated thymic cytokine expression and thymus weight, as well as impaired age-related alterations in SIDS, may be influenced by subclinical infection, which may play a role in initiating SIDS in infants with a compromised immune response. IMPACT STATEMENT: Increased thymic weight and cytokine concentration may suggest possible subclinical infection in SIDS. Elevated thymic weight and cytokine concentration mainly in SIDS cases aged <20 weeks. Age-related impairment in the thymic weight and cytokine expression may be impaired by subclinical infection in SIDS.


Cytokines , Sudden Infant Death , Infant , Child , Humans , Cytokines/metabolism , Asymptomatic Infections , Thymus Gland
3.
Front Immunol ; 14: 1257526, 2023.
Article En | MEDLINE | ID: mdl-37936714

Introduction: Following heart transplantation, a cascade of immunological responses is initiated influencing the clinical outcome and long-term survival of the transplanted patients. The anti-inflammatory cytokine interleukin-10 (IL-10) was shown to be elevated in the blood of heart transplant recipients directly after transplantation but the releasing cell populations and the composition of lymphocyte subsets following transplantation have not been thoroughly studied. Methods: We identified immune cells by immunophenotyping and analyzed intracellular IL-10 production in peripheral blood mononuclear cells (PBMC) of heart transplanted patients (n= 17) before, directly after and 24h post heart transplantation. The cells were stimulated with lipopolysaccharide or PMA/Ionomycin to enhance cytokine production within leukocytes in vitro. Results and discussion: We demonstrate that intermediate monocytes (CD14highCD16+), but not CD8+ T cells, CD4+ T cells, CD56+ NK cells or CD20+ B cells appeared to be the major IL-10 producers within patients PBMC following heart transplantation. Consequently, the absolute monocyte count and the ratio of intermediate monocytes to classical monocytes (CD14+CD16-) were specifically increased in comparison to pre transplant levels. Hence, this population of monocytes, which has not been in the focus of heart transplantation so far, may be an important modulator of clinical outcome and long-term survival of heart transplant recipients. Alteration of blood-circulating monocytes towards a CD14highCD16+ phenotype could therefore shift the pro-inflammatory immune response towards induction of graft tolerance, and may pave the way for the optimization of immunosuppression.


Heart Transplantation , Monocytes , Humans , Leukocytes, Mononuclear , Interleukin-10 , Lipopolysaccharide Receptors , Receptors, IgG , Cytokines
4.
Front Cardiovasc Med ; 10: 1245618, 2023.
Article En | MEDLINE | ID: mdl-37808880

Background: Ex vivo lung perfusion (EVLP) uses continuous normothermic perfusion to reduce ischemic damage and to improve post-transplant outcomes, specifically for marginal donor lungs after the donation after circulatory death. Despite major efforts, the optimal perfusion protocol and the composition of the perfusate in clinical lung transplantation have not been identified. Our study aims to compare the concentration levels of cytokine/chemokine in different perfusion solutions during EVLP, after 1 and 9 h of cold static preservation (CSP) in a porcine cardiac arrest model, and to correlate inflammatory parameters to oxygenation capacities. Methods: Following cardiac arrest, the lungs were harvested and were categorized into two groups: immediate (I-EVLP) and delayed EVLP (D-EVLP), after 1 and 9 h of CSP, respectively. The D-EVLP lungs were perfused with either Steen or modified Custodiol-N solution containing only dextran (CD) or dextran and albumin (CDA). The cytokine/chemokine levels were analyzed at baseline (0 h) and after 1 and 4 h of EVLP using Luminex-based multiplex assays. Results: Within 4 h of EVLP, the concentration levels of TNF-α, IL-6, CXCL8, IFN-γ, IL-1α, and IL-1ß increased significantly (P < 0.05) in all experimental groups. The CD solution contained lower concentration levels of TNF-α, IL-6, CXCL8, IFN-γ, IL-2, IL-12, IL-10, IL-4, IL-1RA, and IL-18 (P < 0.05) compared with those of the Steen solution. The concentration levels of all experimental groups have correlated negatively with the oxygenation capacity values (P < 0.05). Protein concentration levels did not reach statistical significance for I-EVLP vs. D-EVLP and CD vs. CDA solutions. Conclusion: In a porcine cardiac arrest model, a longer period of CSP prior to EVLP did not result in an enhanced protein secretion into perfusates. The CD solution reduced the cytokine/chemokine secretion most probably by iron chelators and/or by the protecting effects of dextran. Supplementing with albumin did not further reduce the cytokine/chemokine secretion into perfusates. These findings may help in optimizing the preservation procedure of the lungs, thereby increasing the donor pool of organs.

5.
Front Immunol ; 14: 1120010, 2023.
Article En | MEDLINE | ID: mdl-37033958

Introduction: SARS-CoV-2 vaccination is the leading strategy to prevent severe courses after SARS-CoV-2 infection. In our study, we analyzed humoral and cellular immune responses in detail to three consecutive homologous or heterologous SARS-CoV-2 vaccinations and breakthrough infections. Methods: Peripheral blood samples of n=20 individuals were analyzed in the time course of three SARS-CoV-2 vaccinations and/or breakthrough infection. S1-, RBD-, S2- and N-specific IgG antibodies were quantified using Luminex-based multiplex assays and electrochemiluminescence multiplex assays for surrogate neutralization in plasma. Changes in cellular immune components were determined via flow cytometry of whole blood samples. Results: All individuals (n=20) responded to vaccination with increasing S1-/RBD-/S2-specific IgG levels, whereas specific plasma IgA displayed individual variability. The third dose increased antibody inhibitory capacity (AIC) against immune-escape variants Beta and Omicron BA.1 independently of age. The mRNA-primed vaccination induced IgG and IgA immunity more efficiently, whereas vector-primed individuals displayed higher levels of memory T and B cells. Vaccinees showed SARS-CoV-2-specific T cell responses, which were further improved and specified after Omicron breakthrough infections in parallel to the appearance of new variant-specific antibodies. Discussion: In conclusion, the third vaccination was essential to increase IgG levels, mandatory to boost AIC against immune-escape variants, and induced SARS-CoV-2-specific T cells. Breakthrough infection with Omicron generates additional spike specificities covering all known variants.


COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Breakthrough Infections , COVID-19/prevention & control , Immunity, Cellular , Immunoglobulin G , Vaccination , Immunoglobulin A
6.
Eur J Immunol ; 53(7): e2250097, 2023 07.
Article En | MEDLINE | ID: mdl-37119053

Early kinetics of lymphocyte subsets involved in tolerance and rejection following heart transplantation (HTx) are barely defined. Here, we aimed to delineate the early alloimmune response immediately after HTx. Therefore, blood samples from 23 heart-transplanted patients were collected before (pre-), immediately (T0), 24 hours (T24), and 3 weeks (3 wks) after HTx. Immunophenotyping was performed using flow cytometry. A significant increase was detected for terminally differentiated (TEMRA) CD4+ or CD8+ T cells and CD56dim CD16+ NK cells immediately after HTx linked to a decrease in naïve CD8+ and CM CD4+ T as well as CD56bright CD16- NK cells, returning to baseline levels at T24. More detailed analyses revealed increased CD69+ CD25- and diminished CD69- CD25- CD4+ or CD8+ T-cell proportions at T0 associated with decreasing S1PR1 expression. Passenger T and NK cells were found at low frequencies only in several patients at T0 and did not correlate with lymphocyte alterations. Collectively, these results suggest an immediate, transient shift toward memory T and NK cells following HTx. Opposite migratory properties of naïve versus memory T and NK cells occurring in the early phase after HTx could underlie these observations and may impinge on the development of allo-specific immune responses.


CD8-Positive T-Lymphocytes , Heart Transplantation , Humans , Killer Cells, Natural , Lymphocyte Subsets , Immunophenotyping , CD56 Antigen/metabolism
7.
Pediatr Res ; 93(5): 1239-1249, 2023 04.
Article En | MEDLINE | ID: mdl-35986144

BACKGROUND: For sudden infant death syndrome (SIDS), an impaired immunocompetence has been discussed for a long time. Cytokines and chemokines are soluble immune mediators (SIM) whose balance is essential for the immune status. We hypothesized that an imbalanced immune response might contribute to the etiology of SIDS. METHODS: We investigated 27 cytokines, chemokines, and growth factors in protein lysates of lungs derived from 29 SIDS cases and 15 control children deceased for other reasons. RESULTS: Except for the CCL5, no significant differences were detected in the lungs between SIDS cases with and without mild upper respiratory tract infections. In contrast, IL-1RA, IL-7, IL-13, and G-CSF were decreased in the merged SIDS cases compared to control cases without evidence of infection. Plotting SIM concentrations against infant age resulted in increasing concentrations in control but not in SIDS lungs, indicating a disturbed immune maturation. Moreover, an age-dependent shift towards a Th2-related pattern was observed in SIDS. CONCLUSIONS: Our findings suggest that an impaired maturation of the immune system, an insufficient response to respiratory pathogens, and an immune response modulated by Th1/Th2 imbalance might play a possible role in triggering SIDS. These findings might in part be explained by chronic stress. IMPACT: Maturation of the cytokine and chemokine network may be impaired in SIDS. An imbalance between Th1- and Th2-related cytokines, which may reflect a state of chronic stress causing a more Th2 shift. An impaired immune maturation, an insufficient response to respiratory pathogens, and an immune response modulated by Th1/Th2 imbalance might play a possible role in SIDS.


Respiratory Tract Infections , Sudden Infant Death , Infant , Child , Humans , Cytokines/metabolism , Sudden Infant Death/etiology , Chemokines , Lung/metabolism
8.
Cytokine ; 149: 155744, 2022 01.
Article En | MEDLINE | ID: mdl-34649160

BACKGROUND: Ischemia/reperfusion injury (IRI) is associated with inflammatory responses contributing to the development of primary graft dysfunction (PGD) and rejection. Here, we investigated the pathophysiology of IRI and the early phase after heart transplantation (HTx) regarding its cytokine/chemokine and endothelial networks. METHODS: Using multiplex technology, we assessed protein concentrations in plasma samples of HTx recipients (n = 11) pre-, postoperatively, 24 h and 3 weeks after HTx. The same proteins were quantified in organ storage solutions at the end of heart storage (n = 10). Unsupervised cluster, principal component analysis (PCA), K-nearest neighbor (KNN) network classifier analysis, ANOVA and Spearman correlation analyses were performed to identify specific patterns for IRI and individual kinetics of important soluble factors in HTx. RESULTS: Unique patterns of soluble factors were identified in plasma of HTx patients. KNN analysis defined IL-10, IL-6, sIL-6Rα, IL-1RA, IL-16, sVEGFR-1, IGFBP-1, HGF and sHer-2 as strongest signals directly post-Tx declining 24 hrs after HTx. By contrast, MIF, osteopontin (OPN), sVCAM-1 and sICAM-1, IGFBP-1, SCGF-ß, HGF were highly enriched in organ storage solutions, reflecting distinct ischemic (storage solution) vs. reperfusion (plasma) signatures. CONCLUSIONS: We identified specific inflammatory signatures for ischemic vs. reperfusion phases of HTx, associated with pro- as well as anti-inflammatory and endothelial biomarker candidates for IRI. These signatures might help to identify potential danger factors and their networks at both the ex situ (ischemic) as well as the reperfusion phase in the recipient after implantation.


Biomarkers/metabolism , Ischemia/metabolism , Reperfusion Injury/metabolism , Adolescent , Adult , Chemokines/metabolism , Child , Cytokines/metabolism , Female , Heart Transplantation/methods , Humans , Male , Middle Aged , Reperfusion/methods , Young Adult
9.
Front Immunol ; 12: 778885, 2021.
Article En | MEDLINE | ID: mdl-34966390

Introduction: For end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs. recipient NK cells. Methods: Peripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry. Results: Within the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR+ T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells. Conclusion: Higher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.


Killer Cells, Natural/immunology , Lung Transplantation , Lung/immunology , Receptors, KIR/blood , T-Lymphocytes/immunology , Adult , Cell Degranulation , Coculture Techniques , Cytotoxicity, Immunologic , Female , Flow Cytometry , Humans , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/blood , K562 Cells , Killer Cells, Natural/metabolism , Lung/metabolism , Lung Transplantation/adverse effects , Male , Middle Aged , Phenotype , Receptors, KIR2DL3/blood , Receptors, KIR3DL1/blood , T-Lymphocytes/metabolism , Time Factors , Treatment Outcome
10.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article En | MEDLINE | ID: mdl-34893580

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
11.
Transpl Immunol ; 61: 101291, 2020 08.
Article En | MEDLINE | ID: mdl-32330566

Belatacept, Nulojix®, inhibits the interaction of CD28 on naïve T cells with B7.1/B7.2 (CD80/86) on antigen presenting cells, leading to T cell hyporesponsiveness and anergy and is approved as immunosuppressive drug in kidney transplantation. Due to its specificity for B7.1/2 molecules, side effects are reduced compared to other immunosuppressive drugs like calcineurin- and mTOR-inhibitors. Kidney transplant recipients under Belatacept-based immunosuppression presented with superior renal function and similar graft survival seven years after transplantation compared to cyclosporine treatment. However, de novo Belatacept-based immunosuppression was associated with increased risk of early rejections and viral (EBV) infections in clinical trials, especially in EBV-naïve patients. Since there is no vaccination against EBV infection available, EBV-derived virus like particles (EBV-VLPs) are currently developed as vaccine strategy. Here, we investigated the immunosuppressive effects of Belatacept compared to calcineurin- and mTOR inhibitors on allo- versus virus-specific T cells and the potency of EBV-VLPs to induce virus-specific T cell responses in vitro. Using PBMC of kidney recipients and healthy donors, we could demonstrate selective inhibition of allo-specific de novo T cell responses but not virus-specific memory T cell responses by Belatacept, as measured by IFN-γ production. In contrast, calcineurin inhibitors suppressed IFN-γ production of virus-specific memory CD8+ T cells completely. These results experimentally confirm the concept that Belatacept blocks CD28-mediated costimulation in newly primed naïve T cells but does not interfere with memory T cell responses being already independent from CD28-mediated costimulation. Additionally, we could show that EBV-VLPs induce a significant though weak IFN-γ-mediated T cell response in vitro in both kidney recipients and healthy donors. In summary, we demonstrated that immunosuppression of kidney recipients by Belatacept may primarily suppress de novo allo-specific T cell responses sparing virus-specific memory T cells. Moreover, EBV-VLPs could represent a novel strategy for vaccination of immunocompromised renal transplant recipients to prevent EBV reactivation especially under Belatacept-based immunosuppression.


Abatacept/therapeutic use , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/physiology , Immunologic Factors/therapeutic use , Kidney Transplantation , T-Lymphocytes/immunology , Virus Diseases/immunology , Adolescent , Adult , Aged , Antigens, Viral/immunology , Female , Healthy Volunteers , Humans , Immunologic Memory , Isoantigens/immunology , Lymphocyte Activation , Male , Middle Aged , Transplant Recipients , Vaccines, Virus-Like Particle , Virion/metabolism , Young Adult
...