Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Total Environ ; 640-641: 921-934, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021326

RESUMEN

Ecological consequences of low-dose radioactivity from natural sources or radioactive waste are important to understand but knowledge gaps still remain. In particular, the soil transfer and bioaccumulation of radionuclides into plant roots is poorly studied. Furthermore, better knowledge of arbuscular mycorrhizal (AM) fungi association may help understand the complexities of radionuclide bioaccumulation within the rhizosphere. Plant bioaccumulation of uranium, thorium and radium was demonstrated at two field sites, where plant tissue concentrations reached up to 46.93 µg g-1 238U, 0.67 µg g-1 232Th and 18.27 kBq kg-1 226Ra. High root retention of uranium was consistent in all plant species studied. In contrast, most plants showed greater bioaccumulation of thorium and radium into above-ground tissues. The influence of specific soil parameters on root radionuclide bioaccumulation was examined. Total organic carbon significantly explained the variation in root uranium concentration, while other soil factors including copper concentration, magnesium concentration and pH significantly correlated with root concentrations of uranium, radium and thorium, respectively. All four orders of Glomeromycota were associated with root samples from both sites and all plant species studied showed varying association with AM fungi, ranging from zero to >60% root colonisation by fungal arbuscules. Previous laboratory studies using single plant-fungal species association had found a positive role of AM fungi in root uranium transfer, but no significant correlation between the amount of fungal infection and root uranium content in the field samples was found here. However, there was a significant negative correlation between AM fungal infection and radium accumulation. This study is the first to examine the role of AM fungi in radionuclide soil-plant transfer at a community level within the natural environment. We conclude that biotic factors alongside various abiotic factors influence the soil-plant transfer of radionuclides and future mechanistic studies are needed to explain these interactions in more detail.


Asunto(s)
Plantas/microbiología , Radio (Elemento)/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo , Torio/metabolismo , Uranio/metabolismo , Micorrizas , Raíces de Plantas , Plantas/metabolismo , Monitoreo de Radiación
2.
Environ Sci Technol ; 49(18): 11070-8, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26292021

RESUMEN

Stimulating the microbial reduction of aqueous uranium(VI) to insoluble U(IV) via electron donor addition has been proposed as a strategy to remediate uranium-contaminated groundwater in situ. However, concerns have been raised regarding the longevity of microbially precipitated U(IV) in the subsurface, particularly given that it may become remobilized if the conditions change to become oxidizing. An alternative mechanism is to stimulate the precipitation of poorly soluble uranium phosphates via the addition of an organophosphate and promote the development of reducing conditions. Here, we selected a sediment sample from a U.K. nuclear site and stimulated the microbial community with glycerol phosphate under anaerobic conditions to assess whether uranium phosphate precipitation was a viable bioremediation strategy. Results showed that U(VI) was rapidly removed from solution and precipitated as a reduced crystalline U(IV) phosphate mineral similar to ningyoite. This mineral was considerably more recalcitrant to oxidative remobilization than the products of microbial U(VI) reduction. Bacteria closely related to Pelosinus species may have played a key role in uranium removal in these experiments. This work has implications for the stewardship of uranium-contaminated groundwater, with the formation of U(IV) phosphates potentially offering a more effective strategy for maintaining low concentrations of uranium in groundwater over long time periods.


Asunto(s)
Biodegradación Ambiental , Precipitación Química , Agua Subterránea/química , Consorcios Microbianos , Compuestos de Uranio/química , Contaminantes Químicos del Agua/química , Anaerobiosis , Bacterias/metabolismo , Glicerol/química , Plantas de Energía Nuclear , Oxidación-Reducción , Fosfatos/química , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA