Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biomech ; 168: 112110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677025

RESUMEN

Rotator cuff (RC) tears are a common source of pain and decreased shoulder strength. Muscle length is known to affect muscle strength, and therefore evaluating changes in supraspinatus muscle length associated with RC pathology, surgical repair, and post-operative recovery may provide insights into functional deficits. Our objective was to develop a reliable MRI-based approach for assessing supraspinatus muscle length. Using a new semi-automated approach for identifying 3D location of the muscle-tendon junction (MTJ), supraspinatus muscle length was calculated as the sum of MTJ distance (distance between 3D MTJ position and glenoid plane) and supraspinatus fossa length (distance between root of the scapular spine and glenoid plane). Inter- and intra-operator reliability of this technique were assessed with intraclass correlation coefficient (ICC) and found to be excellent (ICCs > 0.96). Muscle lengths of 6 patients were determined before RC repair surgery and at 3- and 12-months post-surgery. Changes in normalized muscle length (muscle length as a percentage of pre-surgical muscle length) at 3 months post-surgery varied considerably across patients (16.1 % increase to 7.0 % decrease) but decreased in all patients from 3- to 12-months post-surgery (0.3 % to 17.2 %). This study developed a novel and reliable approach for quantifying supraspinatus muscle length and provided preliminary demonstration of its utility by assessing muscle length changes associated with RC pathology and surgical repair. Future studies can use this technique to evaluate changes over time in supraspinatus muscle length in response to clinical intervention, and associations between muscle length and shoulder function.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Lesiones del Manguito de los Rotadores , Manguito de los Rotadores , Humanos , Imagen por Resonancia Magnética/métodos , Manguito de los Rotadores/diagnóstico por imagen , Manguito de los Rotadores/cirugía , Manguito de los Rotadores/fisiología , Masculino , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/fisiopatología , Persona de Mediana Edad , Femenino , Imagenología Tridimensional/métodos , Anciano , Adulto , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
2.
J Orthop Res ; 42(3): 578-587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814893

RESUMEN

The purpose of this study was to develop a multivariable model to determine the extent to which a combination of etiological factors is associated with supraspinatus tendon tears. Fifty-four asymptomatic individuals (55 ± 4 years) underwent testing of their dominant shoulder. Diagnostic ultrasound was used to assess for a supraspinatus tendon tear. The etiological factors investigated included demographics (age and sex), tendon impingement during shoulder motion (via biplane videoradiography), glenohumeral morphology (via computed tomography imaging), family history of a tear (via self-report), occupational shoulder exposure (via shoulder job exposure matrix), and athletic exposure (via self-report). Univariate relationships between etiological predictors and supraspinatus tears were assessed using logistic regression and odds ratios (ORs), while multivariable relationships were assessed using classification and regression tree analysis. Thirteen participants (24.1%) had evidence of a supraspinatus tear. Individuals with a tear had a higher critical shoulder angle (OR 1.2, p = 0.028) and acromial index (OR 1.2, p = 0.016) than individuals without a tear. The multivariable model suggested that a tear in this cohort can be explained with acceptable accuracy (AUROC = 0.731) by the interaction between acromial index and shoulder occupational exposure: a tear is more likely in individuals with a high acromial index (p < 0.001), and in individuals with a low acromial index and high occupational exposure (p < 0.001). The combination of an individual's glenohumeral morphology (acromial index) and occupational shoulder exposure may be important in the development of supraspinatus tears.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/etiología , Hombro , Rotura
3.
J Orthop Res ; 41(4): 718-726, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35880416

RESUMEN

Internal impingement-or entrapment of the undersurface of the rotator cuff tendon against the glenoid during overhead activities-is believed to contribute to articular-sided tears. However, little is known about internal impingement outside athletic populations. Therefore, the objectives of this study were to (1) describe glenoid-to-footprint distances and proximity centers during dynamic, in vivo motion in asymptomatic individuals, and (2) determine the extent to which these measures differed between individuals with and without a rotator cuff tear. Shoulder kinematics were assessed in 37 asymptomatic individuals during scapular plane abduction using a high-speed biplane radiographic system. Glenoid-to-footprint distances and proximity center locations were calculated by combining the kinematics with computerized tomography-derived bone models. Glenoid-to-footprint contact was presumed to occur when the minimum distance was less than the estimated labral thickness. The condition of the supraspinatus tendon (intact, torn) was assessed using ultrasound. Minimum distances and proximity centers were compared over humerothoracic elevation angles (90°, 110°, 130°, 150°) and between supraspinatus pathology groups using two-factor mixed model analysis of variances. Glenoid-to-footprint minimum distances decreased consistently across elevation angles (p < 0.01) without a significant difference between groups. Contact was estimated to occur in all participants. Proximity centers were generally located on the anterior half of the rotator cuff footprint and on the posterosuperior glenoid. Statement of Clinical Significance: Internal impingement during overhead motions may be a prevalent mechanism of rotator cuff pathology as contact appears to be common and involves the region of the rotator cuff footprint where degenerative rotator cuff tears are thought to originate.


Asunto(s)
Lesiones del Manguito de los Rotadores , Síndrome de Abducción Dolorosa del Hombro , Articulación del Hombro , Humanos , Manguito de los Rotadores , Escápula , Rotación , Fenómenos Biomecánicos , Rango del Movimiento Articular
4.
J Biomech ; 145: 111385, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403529

RESUMEN

Several scapular anatomical coordinate systems have been reported in the literature to describe shoulder kinematics. Unfortunately, the use of different conventions hinders comparison across studies. Further, inconsistencies between a coordinate system and the scapula's 3D axis of motion means that scapular motion will be incorrectly attributed to axes about which it did not rotate. The objectives of this study were to: 1) determine the extent to which the axes of four common scapular coordinate system conventions correspond to the 3D axis of scapular motion (i.e., instantaneous helical axis, IHA), and 2) report the prevalence of scapulothoracic gimbal lock for each convention. Shoulder kinematics were tracked during scapular plane abduction in 45 participants using biplane videoradiography. Scapulothoracic kinematics were described using the original convention proposed by van der Helm, the convention recommended by the International Society of Biomechanics (ISB), a glenoid-based coordinate system, and a glenoid-oriented coordinate system. The 3D angle was calculated between the IHA and each axis of the four conventions (IHA-axis angular deviations). A repeated measures ANOVA was used to compare IHA-axis angular deviations between conventions. The glenoid-oriented and ISB conventions resulted in the smallest and largest IHA-axis angular deviations, respectively (21.7°±3.6° vs. 30.5°±5.2°, p < 0.01). Gimbal lock was approached in 17.8% of participants when using the original convention, 2.2% when using the ISB convention, and 0% when using the glenoid-based or -oriented conventions. These findings suggest the glenoid-oriented coordinate system may be worthy of further consideration when investigating shoulder kinematics during scapular plane abduction.

5.
Clin Biomech (Bristol, Avon) ; 99: 105756, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063742

RESUMEN

BACKGROUND: Arthroplasty with artificial disc replacement for surgical treatment of cervical spine degeneration was introduced with the notion that motion-preserving approaches would prevent development of adjacent segment disease. Though clinical outcomes favor arthroplasty over the commonly used anterior cervical discectomy with fusion approach, clinical studies confirming the biomechanical basis of these results are lacking. The aim of this study was to compare intervertebral kinematics between arthroplasty and fusion patients 6.5 years post-surgery during physiological motion of the neck. METHODS: Using a biplane dynamic X-ray system, computed tomography imaging and model based tracking algorithms, three dimensional intervertebral kinematics were measured during neck axial rotation and extension in 14 patients treated for cervical radiculopathy with fusion (n = 8) or arthroplasty (n = 6). The measurements were performed at 2-year (baseline) and 6.5 year post-surgical time points, with the main interest being in the interaction between surgery types and time points. 3 translations and 3 rotations were investigated for the index (C5C6), and upper- (C4C5) and lower adjacent levels (C6C7). FINDINGS: Surgery-time interaction was significant for axial rotation (P < 0.04) and flexion-extension rotation (P < 0.005) in C4C5 during neck axial rotation, left-right translation (P < 0.04) in C5C6 and anterior-posterior translation in C6C7 (P < 0.04) during neck extension. In contrast with the expectations, axial rotation and flexion-extension decreased in C4C5 during neck rotation and anterior-posterior translation decreased in C6C7 during neck extension for fusion. INTERPRETATION: The findings do not support the notion that adjacent segment motion increases after fusion.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Fusión Vertebral , Reeemplazo Total de Disco , Fenómenos Biomecánicos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/fisiología , Vértebras Cervicales/cirugía , Discectomía/métodos , Humanos , Disco Intervertebral/diagnóstico por imagen , Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/cirugía , Rango del Movimiento Articular/fisiología , Fusión Vertebral/métodos , Reeemplazo Total de Disco/métodos , Resultado del Tratamiento
6.
Orthop J Sports Med ; 10(3): 23259671221084294, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35387360

RESUMEN

Background: Rotator cuff repair is a common orthopaedic procedure that provides pain relief for many patients, but unfortunately, an estimated 20% to 70% of repair procedures will fail. Previous research has shown that elongation (ie, retraction) of a repaired tendon is common even in patients with a repair construct that appears intact on magnetic resonance imaging. However, it is unknown how this repair tissue functions under dynamic conditions. Purpose: To quantify static retraction and maximum dynamic elongation of repair tissue after rotator cuff repair. Study Design: Case series; Level of evidence, 4. Methods: Data from 9 patients were analyzed for this study. During surgery, a 3.1-mm tantalum bead was sutured to the supraspinatus tendon, medial to the repair site. Glenohumeral kinematics were assessed at 1 week (static) and 3 months (static and during scapular-plane abduction) after surgery using a biplanar videoradiographic system. The 3-dimensional position of the bead was calculated relative to the tendon's insertion on the humerus (ie, bead-to-insertion distance). Static retraction was calculated as the change in the bead-to-insertion distance under static conditions between 1 week and 3 months after surgery, and maximum dynamic elongation was calculated as the maximal positive change in the bead-to-insertion distance during dynamic motion relative to the start of motion. The magnitudes of static retraction and maximum dynamic elongation were assessed with 1-sample t tests. Results: At 3 months after surgery, static retraction occurred in all patients by a mean of 10.0 ± 9.1 mm (P = .01 compared with no elongation). During scapular-plane abduction, maximum dynamic elongation averaged 1.4 ± 1.0 mm (P < .01 compared with no elongation). Descriptively, dynamic elongation consistently took 1 of 2 forms: an initial increase in the bead-to-insertion distance (mean, 2.0 ± 0.6 mm) before decreasing until the end of motion or an immediate and substantial decrease in the bead-to-insertion distance at the onset of motion. Conclusion: Repair tissue elongation (static retraction and maximum dynamic elongation) appeared to be a common and significant finding at 3 months after arthroscopic rotator cuff repair. Dynamic elongation of repair tissue during scapular-plane abduction exhibited 1 of 2 distinct patterns, which may suggest different patterns of supraspinatus mechanical and neuromuscular function.

7.
JSES Int ; 6(1): 62-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35141678

RESUMEN

BACKGROUND: Rotator cuff repair provides pain relief for many patients; however, retears are relatively common and affect approximately 20%-70% of patients after repair. Although magnetic resonance imaging (MRI) offers the ability to assess tissue characteristics such as tear size, retraction, and fatty infiltration, it provides little insight into the quality of the musculotendinous tissues the surgeon will encounter during surgery. However, shear wave elastography (SWE) could provide an indirect assessment of quality (ie, stiffness) by measuring the speed of shear waves propagating through tissue. The objective of this study was to determine the extent to which estimated shear modulus predicts repair integrity and functional outcomes 1 year after rotator cuff repair. METHODS: Thirty-three individuals scheduled to undergo arthroscopic rotator cuff repair were enrolled in this study. Before surgery, shear modulus of the supraspinatus tendon and muscle was estimated using ultrasound SWE. MRIs were obtained before and 1 year after surgery to assess tear characteristics and repair integrity, respectively. Shoulder strength, range of motion, and patient-reported pain and function were assessed before and after surgery. Functional outcomes were compared between groups and across time using a two-factor mixed model analysis of variance. Stepwise regression with model comparison was used to investigate the extent to which MRI and shear modulus predicted repair integrity and function at 1 year after surgery. RESULTS: At 1 year after surgery, 56.5% of patients had an intact repair. No significant differences were found in any demographic variable, presurgical tear characteristic, or shear modulus between patients with an intact repair and those with a recurrent tear. Compared with presurgical measures, patients in both groups demonstrated significant improvements at 1 year after surgery in pain (P < .01), self-reported function (P < .01), range of motion (P < .01), and shoulder strength (P < .01). In addition, neither presurgical MRI variables (P > .16) nor shear modulus (P > .52) was significantly different between groups at 1 year after surgery. Finally, presurgical shear modulus generally did not improve the prediction of functional outcomes above and beyond that provided by MRI variables alone (P > .22). CONCLUSION: Although SWE remains a promising modality for many clinical applications, this study found that SWE-estimated shear modulus did not predict repair integrity or functional outcomes at 1 year after surgery, nor did it add to the prediction of outcomes above and beyond that provided by traditional presurgical MRI measures of tear characteristics. Therefore, it appears that further research is needed to fully understand the clinical utility of SWE for musculoskeletal tissue and its potential use for predicting outcomes after surgical rotator cuff repair.

8.
J Orthop Res ; 40(6): 1270-1280, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34436796

RESUMEN

Glenoid component loosening remains a common complication following anatomic total shoulder arthroplasty (TSA); however, plain radiographs are unable to accurately detect early implant migration. The purpose of this study was to validate the accuracy of a method of postoperative, three-dimensional (3D) computed tomography (CT) imaging with metal artifact reduction (MAR) to detect glenoid component migration following anatomic TSA. Tantalum bead markers were inserted into polyethylene glenoid components for implant detection on 3D CT. In-vitro validation was performed using a glenoid component placed into a scapula sawbone and incrementally translated and rotated, with MAR 3D CT acquired at each test position. Accuracy was evaluated by root mean square error (RMSE). In-vivo validation was performed on six patients who underwent anatomic TSA, with two postoperative CT scans acquired in each patient and marker-based radiostereometric analysis (RSA) performed on the same days. Glenoid component migration was calculated relative to a scapular coordinate system for both MAR 3D CT and RSA. Accuracy was evaluated by RMSE and paired Student's t-tests. The largest RMSE on in-vitro testing was 0.24 mm in translation and 0.11° in rotation, and on in-vivo testing was 0.47 mm in translation and 1.04° in rotation. There were no significant differences between MAR 3D CT and RSA measurement methods. MAR 3D CT imaging is capable of quantifying glenoid component migration with a high level of accuracy. MAR 3D CT imaging is advantageous over RSA because it is readily available clinically and can also be used to evaluate the implant-bone interface.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Cavidad Glenoidea , Articulación del Hombro , Prótesis de Hombro , Artroplastía de Reemplazo de Hombro/efectos adversos , Artroplastía de Reemplazo de Hombro/métodos , Cavidad Glenoidea/cirugía , Humanos , Imagenología Tridimensional , Escápula/diagnóstico por imagen , Escápula/cirugía , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía , Prótesis de Hombro/efectos adversos , Tomografía Computarizada por Rayos X/métodos
9.
J Orthop Res ; 40(4): 917-924, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34191325

RESUMEN

Repair tissue healing after rotator cuff repair remains a significant clinical problem, and excessive shoulder activity after surgical repair is believed to contribute to re-tears. In contrast, small animal studies have demonstrated that complete removal of activity impairs tendon healing and have advocated for an "appropriate" level of activity, but in humans the appropriate amount of shoulder activity to enhance healing is not known. As an initial step toward understanding the relationship between postoperative shoulder activity and repair tissue healing, the objectives of this study were to assess the precision, accuracy, and feasibility of a wrist-worn triaxial accelerometer for measuring shoulder activity. Following assessments of precision (±0.002 g) and accuracy (±0.006 g), feasibility was assessed by measuring 1 week of shoulder activity in 14 rotator cuff repair patients and 8 control subjects. Shoulder activity was reported in terms of volume (mean acceleration, activity count, mean activity index, active time) and intensity (intensity gradient). Patients had significantly less volume (p ≤ .03) and intensity (p = .01) than controls. Time post-surgery was significantly associated with the volume (p ≤ .05 for mean acceleration, activity count, and mean activity index) and intensity (p = .03) of shoulder activity, but not active time (p = .08). These findings indicate this approach has the accuracy and precision necessary to continuously monitor shoulder activity with a wrist-worn sensor. The preliminary data demonstrate the ability to discriminate between healthy control subjects and patients recovering from rotator cuff repair and provide support for using a wearable sensor to monitor changes over time in shoulder activity.


Asunto(s)
Lesiones del Manguito de los Rotadores , Hombro , Animales , Artroscopía/métodos , Humanos , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/cirugía , Hombro/cirugía , Resultado del Tratamiento
10.
JSES Int ; 5(3): 500-506, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34136861

RESUMEN

BACKGROUND: Approximately 20-60% of rotator cuff repairs fail with higher failure rates in patients with larger or more chronic tears. Although MRI provides an objective estimate of tear size, it can only provide qualitative descriptions of tear chronicity. By contrast, ultrasound shear wave elastography (SWE) may assess tear chronicity by estimating tissue mechanical properties (ie, shear modulus). Furthermore, SWE imaging does not share many of the challenges associated with MRI (eg, high cost, risk of claustrophobia). Therefore, the objective of this study was to determine the extent to which estimated supraspinatus shear modulus is associated with conventional MRI-based measures of rotator cuff tear size and chronicity. METHODS: Shear modulus was estimated using ultrasound SWE in two regions of the supraspinatus (intramuscular tendon, muscle belly) under two contractile conditions (passive, active) in 22 participants with full-thickness rotator cuff tears. The extent to which estimated supraspinatus shear modulus is associated with conventional MRI measures of tear size and chronicity was assessed using correlation coefficients and Kruskal-Wallis tests, as appropriate. RESULTS: Estimated shear modulus was not significantly associated with anterior/posterior tear size (P > .09), tear retraction (P > .20), occupation ratio (P > .11), or fatty infiltration (P > .30) under any testing condition. DISCUSSION: Although ultrasound SWE measurements have been shown to be altered in the presence of various tendinopathies, the findings of this study suggest the utility of ultrasound SWE in this population (ie, patients with a small to medium supraspinatus rotator cuff tear) before surgical rotator cuff repair remains unclear.

11.
J Vis Exp ; (169)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33779606

RESUMEN

The shoulder is one of the human body's most complex joint systems, with motion occurring through the coordinated actions of four individual joints, multiple ligaments, and approximately 20 muscles. Unfortunately, shoulder pathologies (e.g., rotator cuff tears, joint dislocations, arthritis) are common, resulting in substantial pain, disability, and decreased quality of life. The specific etiology for many of these pathologic conditions is not fully understood, but it is generally accepted that shoulder pathology is often associated with altered joint motion. Unfortunately, measuring shoulder motion with the necessary level of accuracy to investigate motion-based hypotheses is not trivial. However, radiographic-based motion measurement techniques have provided the advancement necessary to investigate motion-based hypotheses and provide a mechanistic understanding of shoulder function. Thus, the purpose of this article is to describe the approaches for measuring shoulder motion using a custom biplanar videoradiography system. The specific objectives of this article are to describe the protocols to acquire biplanar videoradiographic images of the shoulder complex, acquire CT scans, develop 3D bone models, locate anatomical landmarks, track the position and orientation of the humerus, scapula, and torso from the biplanar radiographic images, and calculate the kinematic outcome measures. In addition, the article will describe special considerations unique to the shoulder when measuring joint kinematics using this approach.


Asunto(s)
Movimiento , Manguito de los Rotadores/fisiología , Articulación del Hombro/fisiología , Hombro/fisiología , Tomografía Computarizada por Rayos X/métodos , Grabación de Cinta de Video , Fenómenos Biomecánicos , Femenino , Humanos , Persona de Mediana Edad , Hombro/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen
12.
JSES Int ; 4(4): 838-847, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33345224

RESUMEN

BACKGROUND: To address the need for more objective and quantitative measures of tendon healing in research studies, we intend to use computed tomography (CT) with implanted radiopaque markers on the repaired tendon to measure tendon retraction following rotator cuff repair. In our small prior study, retraction at 1-year follow-up averaged 16.1± 5.3 mm and exceeded 10.0 mm in 12 of 13 patients, and thus tendon retraction appears to be a common clinical phenomenon. This study's objectives were to assess, using 5 longitudinal CT scans obtained over 1 year following rotator cuff repair, the variability in glenohumeral positioning because of pragmatic variations in achieving perfect arm repositioning and to estimate the associated measurement variability in bone-to-tendon marker length measurements. METHODS: Forty-eight patients underwent rotator cuff repair with intraoperative placement of radiopaque tendon markers at the repair site. All patients had a CT scan with their arms at the side on the day of surgery and at 3, 12, 26, and 52 weeks postoperatively. Glenohumeral position (defined by the orientation and distance of the humerus with respect to the scapula) and bone-to-tendon marker lengths were measured from each scan. Within-patient variation in glenohumeral position measurements was described by their pooled within-patient standard deviations (SDs), and variation in bone-to-tendon marker lengths by their standard errors of measurement (SEMs) and 95% confidence level minimally detectable distances (MDD95) and changes (MDC95). RESULTS: The mean glenohumeral orientation from the 5 longitudinal CT scans averaged across the 48 patients was 12.6° abduction, 0.4° flexion, and -0.1° internal rotation. Within-patient SDs (95% confidence intervals) of glenohumeral orientation were 3.0° (2.7°-3.4°) in extension/flexion, 5.2° (4.6°-5.8°) in abduction/adduction, and 8.2° (7.3°-9.2°) in internal/external rotation. The SDs of glenohumeral distances were less than 1 mm in any direction. The estimated SEMs of bone-to-tendon lengths were consistent with a common value of 2.4 mm for any of the tendon markers placed across the repair, with MDD95 of 4.7 mm and MDC95 of 6.7 mm. CONCLUSION: Apparent tendon retraction of 5 mm or more, when measured as the distance from a tendon marker's day of surgery location to its new location on a volumetrically registered longitudinal CT scan, may be considered above the usual range of measurement variation. Tendon retraction measured using implanted radiopaque tendon markers offers an objective and sufficiently reliable means for quantifying the commonly expected changes in structural healing following rotator cuff repair.

13.
J Biomech ; 109: 109924, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32807327

RESUMEN

The rotator cuff is theorized to contribute to force couples required to produce glenohumeral kinematics. Impairment in these force couples would theoretically result in impaired ball-and-socket kinematics. Although less frequently used than traditional kinematic descriptors (e.g., Euler angles, joint translations), helical axes are capable of identifying alterations in ball-and-socket kinematics by quantifying the variability (i.e., dispersion) in axis orientation and position during motion. Consequently, assessing glenohumeral helical dispersion may provide indirect evidence of rotator cuff function. The purpose of this exploratory study was to determine the extent to which rotator cuff pathology is associated with alterations in ball-and-socket kinematics. Fifty-one participants were classified into one of five groups based on an assessment of the supraspinatus using diagnostic imaging: asymptomatic healthy, asymptomatic tendinosis, asymptomatic partial-thickness tear, asymptomatic full-thickness tear, symptomatic full-thickness tear. Glenohumeral kinematics were quantified during coronal plane abduction using a biplane x-ray system and described using instantaneous helical axes. The degree to which glenohumeral motion coincided with ball-and-socket kinematics was described using the angular and positional dispersion about the optimal helical axis and pivot, respectively. No statistically significant difference was observed between groups in angular dispersion. However, symptomatic individuals with a full-thickness supraspinatus tear had significantly more positional dispersion than asymptomatic individuals with a healthy supraspinatus or tendinosis. These findings suggest that symptomatic individuals with a full-thickness supraspinatus tear exhibit impaired ball-and-socket kinematics, which is believed to be associated with a disruption of the glenohumeral force couples.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Fenómenos Biomecánicos , Humanos , Rango del Movimiento Articular , Manguito de los Rotadores
14.
PLoS One ; 15(8): e0237350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32780779

RESUMEN

OBJECTIVE: To compare changes in foraminal motion at two time points post-surgery between artificial disc replacement (ADR) and anterior cervical discectomy and fusion (ACDF). METHODS: Eight ACDF and 6 ADR patients (all single-level C5-6) were tested at 2 years (T1) and 6.5 years (T2) post-surgery. The minimum foraminal height (FH.Min) and width (FW.Min) achieved during neck axial rotation and extension, and the range of these dimensions during motion (FH.Rn and FW.Rn, respectively) were measured using a biplane dynamic x-ray system, CT imaging and model-based tracking while patients performed neck axial rotation and extension tasks. Two-way mixed ANOVA was employed for analysis. RESULTS: In neck extension, significant interactions were found between year post-surgery and type of surgery for FW.Rn at C5-6 (p<0.006) and C6-7 (p<0.005), and for FH.Rn at C6-7 (p<0.01). Post-hoc analysis indicated decreases over time in FW.Rn for ACDF (p<0.01) and increases in FH.Rn for ADR (p<0.03) at the C6-7 adjacent level. At index level, FW.Rn was comparable between ACDF and ADR at T1, but was smaller for ACDF than for ADR at T2 (p<0.002). In axial rotation, differences were found between T1 and T2 but did not depend on type of surgery (p>0.7). CONCLUSIONS: Changes were observed in the range of foraminal geometry at adjacent levels from 2 years to 6.5 years post-surgery that were different between ACDF and ADR for neck extension. These changes are contrary to the notion that motion at adjacent levels continue to increase following ACDF as compared to ADR over the long term.


Asunto(s)
Vértebras Cervicales/fisiopatología , Discectomía/efectos adversos , Degeneración del Disco Intervertebral/cirugía , Rango del Movimiento Articular , Fusión Vertebral/efectos adversos , Reeemplazo Total de Disco/efectos adversos , Adulto , Anciano , Fenómenos Biomecánicos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Femenino , Estudios de Seguimiento , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Tomografía Computarizada por Rayos X , Reeemplazo Total de Disco/instrumentación , Resultado del Tratamiento
15.
Clin Biomech (Bristol, Avon) ; 78: 105091, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32580097

RESUMEN

BACKGROUND: Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus. METHODS: Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm. FINDINGS: Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction. INTERPRETATIONS: Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears.


Asunto(s)
Fenómenos Mecánicos , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/fisiopatología , Manguito de los Rotadores/patología , Manguito de los Rotadores/fisiopatología , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Articulación del Hombro/fisiopatología
16.
J Spine Surg ; 6(1): 18-25, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32309642

RESUMEN

BACKGROUND: Post-surgical changes in adjacent segment motion are considered a factor in further development of degeneration and cervical radiculopathy. The objective was to examine the extent of correlations between physiological motion of cervical foramina and long-term patient reported outcomes (PRO). METHODS: Biplane X-ray imaging and CT-based markerless tracking were used to measure 3D static and dynamic dimensions during neck axial rotation and extension from 18 patients treated for C5-6 radiculopathy with fusion or arthroplasty. Minimum foraminal height (FH.Min) and width (FW.Min), and their range (FH.Range and FW.Range) achieved during a motion task were calculated for adjacent levels (C4-5 and C6-7) at 2.0±0.6 years post-surgery. The modified Japanese Orthopedic Association score (mJOAS), the Neck Disability Index (NDI) including the visual analogue scale (VAS) for neck and arm pain, and the EuroQol EQ-5D score were recorded at 6.5±1.1 years post-surgery. The relationships between 6.5-year outcomes and 2-year foraminal motion were examined using regression. RESULTS: Worsening patient-reported outcomes were generally associated with lower values of FW.Min (P<0.05 to P<0.008), the associations being stronger for neck extension (r2 up to 0.43). Dynamic foraminal measurements from the C6-7 level more significantly and consistently correlated with mJOAS, EQ-5D and NDI Arm Pain VAS (r2=0.27 to 0.43; P<0.03 to P<0.008), whereas those from the C4-5 level correlated with NDI Neck Pain VAS (r2=0.33; P<0.02). CONCLUSIONS: Dynamic 3D foraminal dimensions at 2-year post-surgery, notably FW.Min measured in neck extension at adjacent levels, were associated with PRO at 6.5 years post-surgery. These relationships provide insight into the motion related factors in development of pain and loss of function, and may help develop markers or objective outcome measures.

17.
Foot Ankle Int ; 40(12): 1416-1423, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31423825

RESUMEN

BACKGROUND: Short leg casts (SLCs) and fracture boots are used to treat foot and ankle injuries, but the decision to use one device over the other is often subjective. This study compared the impact of SLCs and low and high fracture boots on ankle motion and offloading. METHODS: Twenty healthy adults were prospectively studied. High-speed dynamic radiography was utilized to determine tibiotalar range of motion in the sagittal plane during nonweightbearing (NWB) and weightbearing (WB) gait in a shoe (control), SLC, and low and high fracture boots. Sensors captured peak plantar surface forces to determine ankle offloading. RESULTS: In NWB, the low fracture boot (2.2 ± 2.0 degrees), high fracture boot (2.3 ± 1.6 degrees), and SLC (2.3 ± 1.5 degrees) had significantly less motion compared with the control (3.6 ± 2.1 degrees; P ≤ .026). During WB, the SLC (3.4 ± 1.4 degrees) and high fracture boot (4.8 ± 2.0 degrees) had less motion compared with the low fracture boot (7.8 ± 3.4 degrees; P < .001). Finally, the SLC (172.6% ± 48.3% body weight [BW]) and low fracture (165.1% ± 36.2% BW) and high fracture (154.5% ± 32.9% BW) boots were associated with less peak plantar surface force compared with the control (195.0% ± 43.8% BW; P ≤ .087). CONCLUSION: The SLC and high fracture boot immobilized the ankle in NWB and offloaded and immobilized the ankle in WB. The low fracture boot also immobilized the ankle in NWB, but in WB, the low fracture boot only offloaded the ankle and did not immobilize it. CLINICAL RELEVANCE: The low fracture boot may be more suited for NWB or possibly immobilizing the foot in WB.


Asunto(s)
Tobillo/fisiología , Tirantes , Moldes Quirúrgicos , Pie/fisiología , Rango del Movimiento Articular , Soporte de Peso , Adolescente , Adulto , Fenómenos Biomecánicos , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Radiografía , Adulto Joven
19.
Knee ; 26(2): 347-354, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638680

RESUMEN

PURPOSE: Anterior cruciate ligament (ACL) ruptures are common and are frequently reconstructed using a patellar tendon (PT) autograft. Unfortunately, the time course of PT healing after ACL reconstruction is not particularly well understood. Thus, the primary objective of this study was to use shear wave elastography (SWE) to evaluate the extent to which shear wave speed (SWS) is associated with time after ACL reconstruction. METHODS: Longitudinal SWE images were acquired from lateral, central, and medial regions of the PT from two groups: 30 patients who had undergone ACL reconstruction with a PT autograft within the preceding 40 months, and 30 age-matched asymptomatic control subjects. SWE images were acquired at 20° and 90° of passive flexion from both knees. In each subject group, statistical analyses assessed changes in mean SWS with time post-surgery, as well as differences in mean SWS between PT regions and limbs. RESULTS: In the ACL reconstruction patients, mean SWS increased with time post-surgery in the lateral region of the involved knee (p = 0.025) and decreased with time post-surgery in the central region of the contralateral knee (p = 0.022). CONCLUSION: The findings suggest that there is an association between the mechanical properties of the PT and time post-surgery in both the involved and contralateral limbs after ACL reconstruction. These changes are likely due to maturation of the donor site tissue and changes in gait/loading patterns following ACL rupture and reconstruction. LEVEL OF EVIDENCE: Level II - Prospective Cohort.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/diagnóstico , Reconstrucción del Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Articulación de la Rodilla/diagnóstico por imagen , Rótula/cirugía , Cicatrización de Heridas , Adolescente , Adulto , Ligamento Cruzado Anterior/fisiopatología , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Femenino , Estudios de Seguimiento , Humanos , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Masculino , Rótula/diagnóstico por imagen , Ligamento Rotuliano/cirugía , Estudios Prospectivos , Rango del Movimiento Articular/fisiología , Tendones/trasplante , Trasplante Autólogo , Adulto Joven
20.
Ultrasonography ; 38(1): 2-12, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343557

RESUMEN

Shear wave elastography (SWE) is an emerging technology that provides information about the inherent elasticity of tissues by producing an acoustic radiofrequency force impulse, sometimes called an "acoustic wind," which generates transversely-oriented shear waves that propagate through the surrounding tissue and provide biomechanical information about tissue quality. Although SWE has the potential to revolutionize bone and joint imaging, its clinical application has been hindered by technical and artifactual challenges. Many of the stumbling blocks encountered during musculoskeletal SWE imaging are readily recognizable and can be overcome, but progressive advances in technology and a better understanding of image acquisition are required before SWE can reliably be used in musculoskeletal imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA