Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 889: 163956, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149194

RESUMEN

Life cycle assessment (LCA) was applied to evaluate duckweed ponds and constructed wetlands as polishing steps in pig manure liquid fraction treatment. Using nitrification-denitrification (NDN) of the liquid fraction as the starting point, the LCA compared direct land application of the NDN effluent with different combinations of duckweed ponds, constructed wetlands and discharge into natural waterbodies. Duckweed ponds and constructed wetlands are viewed as a viable tertiary treatment option and potential remedy for nutrient imbalances in areas of intense livestock farming, such as in Belgium. As the effluent stays in the duckweed pond, settling and microbial degradation reduce the remaining phosphorous and nitrogen concentrations. Combined with duckweed and/or wetland plants that take up nutrients in their plant body, this approach can reduce over-fertilisation and prevent excessive nitrogen losses to aquatic environments. In addition, duckweed could serve as an alternative livestock feed and replace imports of protein destined for animal consumption. The environmental performance of the overall treatment systems studied was found to depend greatly on assumptions about the possible avoidance of potassium fertiliser production through the field application of effluents. If it is assumed that the potassium contained in the effluent replaces mineral fertiliser, direct field application of the NDN effluent performed best. If the application of NDN effluent does not lead to mineral fertiliser savings or if the replaced K fertiliser is of low grade, duckweed ponds seem to be a viable additional step in the manure treatment chain. Consequently, whenever background concentrations of N and/or P in fields allow for effluent application and potassium fertiliser substitution, direct application should be favoured over further treatment. If direct land application of the NDN effluent is not an option, the focus should be on long residence times in duckweed ponds to allow for maximum nutrient uptake and feed production.


Asunto(s)
Araceae , Estanques , Animales , Porcinos , Humedales , Estiércol , Eliminación de Residuos Líquidos , Fertilizantes , Plantas/metabolismo , Araceae/metabolismo , Nitrógeno/metabolismo , Estadios del Ciclo de Vida
2.
Resour Conserv Recycl ; 182: 106325, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35782309

RESUMEN

Phosphate rock (PR) has been designated as a Critical Raw Material in the European Union (EU). This has led to increased emphasis on alternative P recovery (APR) from secondary streams like wastewater sludge (WWS). However, WWS end-use is a contentious topic, and EU member states prefer different end-use pathways (land application/incineration/valorisation in cement kilns). Previous Life Cycle Assessments (LCA) on APRs from WWS reached contrasting conclusions; while most considered WWS as waste and highlighted a net benefit relative to PR mining and beneficiation, others viewed WWS as a resource and highlighted a net burden of the treatment. We used a combined functional unit (that views WWS from a waste as well as a resource perspective) and applied it on a Flemish wastewater treatment plant (WWTP) with struvite recovery as APR technology. Firstly, a retrospective comparison was performed to measure the WWTP performance before and after struvite recovery and the analysis was complemented by uncertainty and global sensitivity analyses. The results showed struvite recovery provides marginal environmental benefits due to improved WWS dewatering and reduced polymer use. Secondly, a prospective LCA approach was performed to reflect policy changes regarding WWS end-use options in Flanders. Results indicated complete mono-incineration of WWS, ash processing to recover P and the subsequent land application appears to be less sustainable in terms of climate change, human toxicity, and terrestrial acidification relative to the status quo, i.e., co-incineration with municipal solid waste and valorisation at cement kilns. Impacts on fossil depletion, however, favour mono-incineration over the status quo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA