Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(9): 3576-81, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22323601

RESUMEN

Patterning of the floral organs is exquisitely controlled and executed by four classes of homeotic regulators. Among these, the class B and class C floral homeotic regulators are of central importance as they specify the male and female reproductive organs. Inappropriate induction of the class B gene APETALA3 (AP3) and the class C gene AGAMOUS (AG) causes reduced reproductive fitness and is prevented by polycomb repression. At the onset of flower patterning, polycomb repression needs to be overcome to allow induction of AP3 and AG and formation of the reproductive organs. We show that the SWI2/SNF2 chromatin-remodeling ATPases SPLAYED (SYD) and BRAHMA (BRM) are redundantly required for flower patterning and for the activation of AP3 and AG. The SWI2/SNF2 ATPases are recruited to the regulatory regions of AP3 and AG during flower development and physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3). SYD and LFY association with the AP3 and AG regulatory loci peaks at the same time during flower patterning, and SYD binding to these loci is compromised in lfy and lfy sep3 mutants. This suggests a mechanism for SWI2/SNF2 ATPase recruitment to these loci at the right stage and in the correct cells. SYD and BRM act as trithorax proteins, and the requirement for SYD and BRM in flower patterning can be overcome by partial loss of polycomb activity in curly leaf (clf) mutants, implicating the SWI2/SNF2 chromatin remodelers in reversal of polycomb repression.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/biosíntesis , Adenosina Trifosfatasas/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/fisiología , Proteínas de Dominio MADS/biosíntesis , Proteínas Represoras/antagonistas & inhibidores , Factores de Transcripción/fisiología , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Flores/ultraestructura , Proteínas de Dominio MADS/genética , Proteínas del Grupo Polycomb , Mapeo de Interacción de Proteínas , Transcripción Genética
2.
Plant Cell ; 19(2): 403-16, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17293567

RESUMEN

Chromatin remodeling is emerging as a central mechanism for patterning and differentiation in multicellular eukaryotes. SWI/SNF chromatin remodeling ATPases are conserved in the animal and plant kingdom and regulate transcriptional programs in response to endogenous and exogenous cues. In contrast with their metazoan orthologs, null mutants in two Arabidopsis thaliana SWI/SNF ATPases, BRAHMA (BRM) and SPLAYED (SYD), are viable, facilitating investigation of their role in the organism. Previous analyses revealed that syd and brm null mutants exhibit both similar and distinct developmental defects, yet the functional relationship between the two closely related ATPases is not understood. Another central question is whether these proteins act as general or specific transcriptional regulators. Using global expression studies, double mutant analysis, and protein interaction assays, we find overlapping functions for the two SWI/SNF ATPases. This partial diversification may have allowed expansion of the SWI/SNF ATPase regulatory repertoire, while preserving essential ancestral functions. Moreover, only a small fraction of all genes depends on SYD or BRM for expression, indicating that these SWI/SNF ATPases exhibit remarkable regulatory specificity. Our studies provide a conceptual framework for understanding the role of SWI/SNF chromatin remodeling in regulation of Arabidopsis development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Genes Reporteros , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
3.
Development ; 133(16): 3223-30, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16854978

RESUMEN

The CUP-SHAPED COTYLEDON (CUC) genes CUC1, CUC2 and CUC3 act redundantly to control cotyledon separation in Arabidopsis. In order to identify novel regulators of this process, we have performed a phenotypical enhancer screen using a null allele of cuc2, cuc2-1. We identified three nonsense alleles of AtBRM, an Arabidopsis SWI/SNF chromatin remodeling ATPase, that result in strong cotyledon fusion in cuc2-1. atbrm also enhances cotyledon fusion in loss-of-function cuc1 and cuc3 mutants, suggesting a general requirement for this ATPase in cotyledon separation. By contrast, a null allele of SPLAYED (SYD), the closest homolog of AtBRM in Arabidopsis, enhances only the loss-of-function cuc1 mutant. By investigating the activities of the CUC promoters in the cotyledon boundary during embryogenesis in sensitized backgrounds, we demonstrate that AtBRM upregulates the transcription of all three CUC genes, whereas SYD upregulates the expression of CUC2. Our results uncover a specific role for both chromatin remodeling ATPases in the formation and/or maintenance of boundary cells during embryogenesis.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Ensamble y Desensamble de Cromatina/fisiología , Cotiledón/embriología , Regulación de la Expresión Génica de las Plantas , Adenosina Trifosfatasas/genética , Alelos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/fisiología , Ensamble y Desensamble de Cromatina/genética , Codón sin Sentido , Cotiledón/anatomía & histología , Cotiledón/genética , Genes de Plantas , Factores de Transcripción/análisis , Factores de Transcripción/genética
4.
Plant J ; 46(4): 685-99, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16640604

RESUMEN

The SNF2-like chromatin-remodeling ATPase SPLAYED (SYD) was identified as a co-activator of floral homeotic gene expression in Arabidopsis. SYD is also required for meristem maintenance and regulates flowering under a non-inductive photoperiod. SNF2 ATPases are structurally and functionally conserved from yeast to humans. In addition to the conserved protein features, SYD has a large unique C-terminal domain. We show here that SYD is present as two forms in the nucleus, full-length and truncated, with the latter apparently lacking the C-terminal domain. The ratio of the two forms of endogenous SYD differs in juvenile and in adult tissues. Furthermore, an SYD variant lacking the C-terminal domain (SYDDeltaC) rescues the syd null mutant, indicating that the N-terminal ATPase AT-hook-containing region of SYD is sufficient for biological activity. Plants expressing SYDDeltaC show molecular and morphological phenotypes opposite to those of the null mutant, suggesting that the construct results in increased activity. This increased activity is at least in part due to elevated SYD protein levels in these lines. We propose that the C-terminal domain may control SYD accumulation and/or specific activity in the context of the full-length protein. The presence of the C-terminal domain in rice SYD suggests that its role is probably conserved in the two classes of flowering plants.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Ensamble y Desensamble de Cromatina , Proteínas Nucleares/química , Secuencias AT-Hook , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , Reproducción , Alineación de Secuencia
5.
Development ; 133(9): 1673-82, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16554366

RESUMEN

The timing of the switch from vegetative to reproductive development is crucial for species survival. The plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this switch in Arabidopsis, in part via the direct activation of two other meristem identity genes, APETALA1 (AP1) and CAULIFLOWER (CAL). We recently identified five new direct LFY targets as candidates for the missing meristem identity regulators that act downstream of LFY. Here, we demonstrate that one of these, the class I homeodomain leucine-zipper transcription factor LMI1, is a meristem identity regulator. LMI1 acts together with LFY to activate CAL expression. The interaction between LFY, LMI1 and CAL resembles a feed-forward loop transcriptional network motif. LMI1 has additional LFY-independent roles in the formation of simple serrated leaves and in the suppression of bract formation. The temporal and spatial expression of LMI1 supports a role in meristem identity and leaf/bract morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Proteínas de Dominio MADS/genética , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Modelos Biológicos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
6.
Plant Cell ; 14(12): 3255-69, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12468741

RESUMEN

Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein. The mutation causes decreased stability of UGA-containing mRNAs. Our data suggest that transcripts with UGA stop codons are terminated exclusively by AtprfB in chloroplasts and that AtprfB is involved in the regulation of both mRNA stability and protein synthesis. Furthermore, sequence data reveal a +1 frameshift at an internal in-frame TGA stop codon in the progenitor prfB gene of cyanobacteria. The expression pattern and functions of atprfB could reflect evolutionary driving forces toward the conservation of TGA stop codons exclusively in plastid genomes of land plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Codón de Terminación/genética , Factores de Terminación de Péptidos/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Cloroplastos/genética , Cloroplastos/metabolismo , Mapeo Cromosómico , Codón de Terminación/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Mutación del Sistema de Lectura , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Datos de Secuencia Molecular , Mutación , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN del Cloroplasto/genética , ARN del Cloroplasto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA