Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Hum Mol Genet ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727562

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.

2.
Cerebellum ; 23(1): 145-161, 2024 Feb.
Article En | MEDLINE | ID: mdl-36680704

Spinocerebellar ataxia type 2 (SCA2) is a hereditary disorder, caused by an expansion of polyglutamine in the ataxin-2 protein. Although the mutant protein is expressed throughout all the cell and organ types, the cerebellum is primarily affected. The disease progression is mainly accompanied by a decline in motor functions. However, the disturbances in cognitive abilities and low mental state have also been reported in patients. Recent evidence suggests that the cerebellar functionality expands beyond the motor control. Thus, the cerebellum turned out to be involved into the language, verbal working, and spatial memory; executive functions such as working memory, planning, organizing, and strategy formation; and emotional processing. Here, we used the transgenic SCA2-58Q mice to evaluate their anxiety, cognitive functions, and mood alterations. The expression of the mutant ataxin-2 specifically in the cerebellar Purkinje cells (PCs) in SCA2-58Q mice allowed us to study the direct involvement of the cerebellum into the cognitive and affective control. We determined that SCA2-58Q mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Our results support the idea of cerebellar involvement in cognitive control and the handling of emotions.


Cognitive Dysfunction , Spinocerebellar Ataxias , Humans , Mice , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/psychology , Cerebellum , Purkinje Cells , Mice, Transgenic , Cognitive Dysfunction/genetics , Disease Models, Animal
3.
Hum Mol Genet ; 33(4): 299-317, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37862125

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant hereditary disorder, caused by an expansion of polyglutamine in the ataxin-3 protein. SCA3 symptoms include progressive motor decline caused by an atrophy of the cerebellum and brainstem. However, it was recently reported that SCA3 patients also suffer from the cerebellar cognitive affective syndrome. The majority of SCA3 patients exhibit cognitive decline and approximately half of them suffer from depression and anxiety. The necessity to find a combined therapy for both motor and cognitive deficits in a SCA3 mouse model is required for the development of SCA3 treatment. Here, we demonstrated that the SCA3-84Q transgenic mice exhibited anxiety over the novel brightly illuminated environment in the open field, novelty suppressed feeding, and light-dark place preference tests. Moreover, SCA3-84Q mice also suffered from a decline in recognition memory during the novel object recognition test. SCA3-84Q mice also demonstrated floating behavior during the Morris water maze that can be interpreted as a sign of low mood and aversion to activity, i.e. depressive-like state. SCA3-84Q mice also spent more time immobile during the forced swimming and tail suspension tests which is also evidence for depressive-like behavior. Therefore, the SCA3-84Q mouse model may be used as a model system to test the possible treatments for both ataxia and non-motor symptoms including depression, anxiety, and memory loss.


Machado-Joseph Disease , Humans , Mice , Animals , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Depression/genetics , Cerebellum/metabolism , Ataxin-3/genetics , Ataxin-3/metabolism , Mice, Transgenic , Anxiety/genetics
4.
Sci Rep ; 13(1): 12588, 2023 08 03.
Article En | MEDLINE | ID: mdl-37537226

Spinocerebellar ataxia type 2 (SCA2) is a polyglutamine disorder caused by a pathological expansion of CAG repeats in ATXN2 gene. SCA2 is accompanied by cerebellar degeneration and progressive motor decline. Cerebellar Purkinje cells (PCs) seem to be primarily affected in this disorder. The majority of the ataxia research is focused on the motor decline observed in ataxic patients and animal models of the disease. However, recent evidence from patients and ataxic mice suggests that SCA2 can also share the symptoms of the cerebellar cognitive affective syndrome. We previously reported that SCA2-58Q PC-specific transgenic mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Here we studied the effect of the activation of the small conductance calcium-activated potassium channels (SK channels) by chlorzoxazone (CHZ) combined with the folic acid (FA) on the PC firing and also motor, cognitive and affective symptoms in SCA2-58Q mice. We realized that CHZ-FA combination improved motor and cognitive decline as well as ameliorated mood alterations in SCA2-58Q mice without affecting the firing rate of their cerebellar PCs. Our results support the idea of the combination therapy for both ataxia and non-motor symptoms in ataxic mice without affecting the firing frequency of PCs.


Cognitive Dysfunction , Spinocerebellar Ataxias , Mice , Animals , Chlorzoxazone , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Mice, Transgenic , Cognitive Dysfunction/drug therapy , Cognition
5.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119466, 2023 06.
Article En | MEDLINE | ID: mdl-36940741

Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.


Purkinje Cells , Spinocerebellar Ataxias , Mice , Animals , Purkinje Cells/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Spinocerebellar Ataxias/genetics
6.
Biochemistry (Mosc) ; 87(9): 851-870, 2022 Sep.
Article En | MEDLINE | ID: mdl-36180985

Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.


Astrocytes , Neurogenesis , Astrocytes/metabolism , Central Nervous System , Membrane Transport Proteins/metabolism , Neuroglia
7.
Cerebellum ; 21(5): 742-749, 2022 Oct.
Article En | MEDLINE | ID: mdl-34978024

Spinocerebellar ataxia type 2 (SCA2) is an incurable hereditary disorder accompanied by cerebellar degeneration following ataxic symptoms. The causative gene for SCA2 is ATXN2. The ataxin-2 protein is involved in RNA metabolism; the polyQ expansion may interrupt ataxin-2 interaction with its molecular targets, thus representing a loss-of-function mutation. However, mutant ataxin-2 protein also displays the features of gain-of-function mutation since it forms the aggregates in SCA2 cells and also enhances the IP3-induced calcium release in affected neurons. The cerebellar Purkinje cells (PCs) are primarily affected in SCA2. Their tonic pacemaker activity is crucial for the proper cerebellar functioning. Disturbances in PC pacemaking are observed in many ataxic disorders. The abnormal intrinsic pacemaking was reported in mouse models of episodic ataxia type 2 (EA2), SCA1, SCA2, SCA3, SCA6, Huntington's disease (HD), and in some other murine models of the disorders associated with the cerebellar degeneration. In our studies using SCA2-58Q transgenic mice via cerebellar slice recording and in vivo recording from urethane-anesthetized mice and awake head-fixed mice, we have demonstrated the impaired firing frequency and irregularity of PCs in these mice. PC pacemaker activity is regulated by SK channels. The pharmacological activation of SK channels has demonstrated some promising results in the electrophysiological experiments on EA2, SCA1, SCA2, SCA3, SCA6, HD mice, and also on mutant CACNA1A mice. In our studies, we have reported that the SK activators CyPPA and NS309 converted bursting activity into tonic, while oral treatment with CyPPA and NS13001 significantly improved motor performance and PC morphology in SCA2 mice. The i.p. injections of chlorzoxazone (CHZ) during in vivo recording sessions converted bursting cells into tonic in anesthetized SCA2 mice. And, finally, long-term injections of CHZ recovered the precision of PC pacemaking activity in awake SCA2 mice and alleviated their motor decline. Thus, the SK activation can be used as a potential way to treat SCA2 and other diseases accompanied by cerebellar degeneration.


Ataxin-2 , Spinocerebellar Ataxias , Animals , Ataxin-2/metabolism , Cerebellum , Mice , Mice, Transgenic , Purkinje Cells/physiology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism
8.
Cells ; 10(7)2021 06 25.
Article En | MEDLINE | ID: mdl-34202359

In the current review, we aim to discuss the principles and the perspectives of using the genetic constructs based on AAV vectors to regulate astrocytes' activity. Practical applications of optogenetic approaches utilizing different genetically encoded opsins to control astroglia activity were evaluated. The diversity of astrocytic cell-types complicates the rational design of an ideal viral vector for particular experimental goals. Therefore, efficient and sufficient targeting of astrocytes is a multiparametric process that requires a combination of specific AAV serotypes naturally predisposed to transduce astroglia with astrocyte-specific promoters in the AAV cassette. Inadequate combinations may result in off-target neuronal transduction to different degrees. Potentially, these constraints may be bypassed with the latest strategies of generating novel synthetic AAV serotypes with specified properties by rational engineering of AAV capsids or using directed evolution approach by searching within a more specific promoter or its replacement with the unique enhancer sequences characterized using modern molecular techniques (ChIP-seq, scATAC-seq, snATAC-seq) to drive the selective transgene expression in the target population of cells or desired brain regions. Realizing these strategies to restrict expression and to efficiently target astrocytic populations in specific brain regions or across the brain has great potential to enable future studies.


Astrocytes/metabolism , Genetic Vectors/metabolism , Animals , Astrocytes/physiology , Dependovirus/metabolism , Genetic Therapy , Humans , Promoter Regions, Genetic/genetics , Transgenes
9.
Biochemistry (Mosc) ; 86(4): 471-479, 2021 Apr.
Article En | MEDLINE | ID: mdl-33941067

Huntington's disease (HD) is a neurodegenerative, dominantly inherited genetic disease caused by expansion of the polyglutamine tract in the huntingtin gene. At the cellular level, HD is characterized by the accumulation of mutant huntingtin protein in brain cells, resulting in the development of the HD phenotype, which includes mental disorders, decreased cognitive abilities, and progressive motor impairments in the form of chorea. Despite numerous studies, no unambigous connection between the accumulation of mutant protein and selective death of striatal neurons has yet been established. Recent studies have shown impairments in the calcium homeostasis in striatal neurons in HD. These cells are extremely sensitive to changes in the cytoplasmic concentration of calcium and its excessive increase leads to their death. One of the possible ways to normalize the balance of calcium in striatal neurons is through the sigma 1 receptor (S1R), which act as a calcium sensor that also exhibits modulating chaperone activity upon the cell stress observed during the development of many neurodegenerative diseases. The fact that S1R is a ligand-operated protein makes it a new promising molecular target for the development of drug therapy of HD based on the agonists of this receptor.


Calcium/metabolism , Corpus Striatum/metabolism , Huntington Disease/metabolism , Neurons/metabolism , Receptors, sigma/antagonists & inhibitors , Animals , Corpus Striatum/drug effects , Endoplasmic Reticulum/metabolism , Humans , Huntington Disease/drug therapy , Neurons/drug effects , Receptors, sigma/metabolism , Sigma-1 Receptor
10.
Rev Neurosci ; 32(5): 459-479, 2021 07 27.
Article En | MEDLINE | ID: mdl-33550788

Astrocytes play a major role in brain function and alterations in astrocyte function that contribute to the pathogenesis of many brain disorders. The astrocytes are attractive cellular targets for neuroprotection and brain tissue regeneration. Development of novel approaches to monitor and to control astroglial function is of great importance for further progress in basic neurobiology and in clinical neurology, as well as psychiatry. Recently developed advanced optogenetic and chemogenetic techniques enable precise stimulation of astrocytes in vitro and in vivo, which can be achieved by the expression of light-sensitive channels and receptors, or by expression of receptors exclusively activated by designer drugs. Optogenetic stimulation of astrocytes leads to dramatic changes in intracellular calcium concentrations and causes the release of gliotransmitters. Optogenetic and chemogenetic protocols for astrocyte activation aid in extracting novel information regarding the function of brain's neurovascular unit. This review summarizes current data obtained by this approach and discusses a potential mechanistic connection between astrocyte stimulation and changes in brain physiology.


Astrocytes , Optogenetics , Brain , Humans , Phenotype
11.
Cell Calcium ; 93: 102319, 2021 01.
Article En | MEDLINE | ID: mdl-33248384

Cerebellar Purkinje cells (PCs) fire spontaneously in a tonic mode, although the precision of this pacemaking activity is disturbed in many abnormal conditions involving cerebellar atrophy, such as many spinocerebellar ataxias (SCAs). In our previous studies we used the single-unit extracellular recording method to analyze spontaneous PC firing in vivo in the anesthetized SCA2-58Q transgenic mice. We realized that PCs from aging SCA2-58Q mice fire much less regularly compared to PCs from their wild type (WT) littermates and this abnormal activity can be reversed with an intraperitoneal (i. p.) injection of SK channel-positive modulator chlorzoxazone (CHZ). Here we used the same single-unit extracellular recording method to analyze the spontaneous firing in vivo in awake SCA2-58Q transgenic mice. For this purpose, we used the Mobile HomeCage (Neurotar, Finland) floating platform to immobilize the experimental animal's head during the recording sessions. We discovered that generally PCs from awake animals fired much more frequently and much less regularly than previously observed PCs from anesthetized animals. In vivo recordings from awake SCA2/WT mice revealed that complex spikes, which are generated by PCs in reply to the excitation coming by climbing fibers, as well as simple spikes, were much less frequent in SCA2 mice compared to their WT littermates. To test the effect of the SK channel positive modulation on the PCs firing activity in awake SCA2 mice and also the effect on their motor coordination, we started the CHZ trial in these mice. We discovered that the long-term i. p. injections of CHZ did not affect the spike generation in SCA2-58Q mice, however, they did recover the precision of this spontaneous pacemaking activity. Furthermore, we also showed that treatment with CHZ alleviated the age-dependent motor impairment in SCA2-58Q mice. We propose that the lack of precision in PC spike generation might be a key cause for the progression of ataxic symptoms in different SCAs and that the activation of calcium-activated potassium channels, including SK channels, can be used as a potential way to treat SCAs on the physiological level of the disease.


Action Potentials/physiology , Cerebellum/physiopathology , Purkinje Cells/physiology , Spinocerebellar Ataxias/physiopathology , Wakefulness/physiology , Action Potentials/drug effects , Aging/pathology , Animals , Chlorzoxazone/administration & dosage , Chlorzoxazone/pharmacology , Disease Models, Animal , Injections, Intraperitoneal , Mice, Transgenic , Motor Activity/drug effects , Purkinje Cells/drug effects
12.
Front Neurosci ; 14: 279, 2020.
Article En | MEDLINE | ID: mdl-32317916

Huntington's disease (HD) is a hereditary neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein, Striatum atrophy in HD leads to a progressive disturbance of psychiatric, motor, and cognitive function. Recent studies of HD patients revealed that the degeneration of cerebellum is also observed independently from the striatal atrophy during early HD stage and may contribute to the motor impairment and ataxia observed in HD. Cerebellar Purkinje cells (PCs) are responsible for the proper cerebellar pathways functioning and motor control. Recent studies on mouse models of HD have shown that the abnormality of the biochemical functions of PCs are observed in HD, suggesting the contribution of PC dysfunction and death to the impaired movement coordination observed in HD. To investigate ataxic symptoms in HD we performed a series of experiments with the yeast artificial chromosome transgenic mouse model of HD (YAC128). Using extracellular single-unit recording method we found that the portion of the cerebellar PCs with bursting and irregular patterns of spontaneous activity drastically rises in aged YAC128 HD mice when compared with wild type littermates. Previous studies demonstrated that SK channels are responsible for the cerebellar PC pacemaker activity and that positive modulation of SK channel activity exerted beneficial effects in different ataxic mouse models. Here we studied effects of the SK channels modulator chlorzoxazone (CHZ) on the motor behavior of YAC128 HD mice and also on the electrophysiological activity and neuroanatomy of the cerebellar PCs from these mice. We determined that the long-term intraperitoneal injections of CHZ alleviated the progressive impairment in the firing pattern of YAC128 PCs. We also demonstrated that treatment with CHZ rescued age-dependent motor incoordination and improved the cerebellar morphology in YAC128 mice. We propose that abnormal changes in the PC firing patterns might be a one of the possible causes of ataxic symptoms in HD and in other polyglutamine disorders and that the pharmacological activation of SK channels may serve as a potential way to improve the activity of cerebellar PCs and relieve the ataxic phenotype in HD patients.

13.
Neurotherapeutics ; 16(4): 1050-1073, 2019 10.
Article En | MEDLINE | ID: mdl-31435879

The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.


Ataxin-2/genetics , Peptides/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Animals , Ataxin-2/metabolism , Brain/metabolism , Brain/pathology , Genetic Therapy/methods , Genetic Therapy/trends , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Mutation/physiology , Nerve Net/metabolism , Nerve Net/pathology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Oxidative Stress/physiology , Peptides/metabolism , Spinocerebellar Ataxias/metabolism , Stem Cell Transplantation
14.
Cerebellum ; 17(5): 590-600, 2018 Oct.
Article En | MEDLINE | ID: mdl-29876801

Cerebellar Purkinje cells (PCs) and cerebellar pathways are primarily affected in many autosomal dominant cerebellar ataxias. PCs generate complex spikes (CS) in vivo when activated by climbing fiber (CF) which rise from the inferior olive. In this study, we investigated the functional state of the CF-PC circuitry in the transgenic mouse model of spinocerebellar ataxia type 2 (SCA2), a polyglutamine neurodegenerative genetic disease. In our experiments, we used an extracellular single-unit recording method to compare the PC activity pattern and the CS shape in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered no alterations in the CS properties of PCs in aging SCA2 mice. To examine the integrity of the olivocerebellar pathway, we applied harmaline, an alkaloid that acts directly on the inferior olive neurons. The pharmacological stimulation of olivocerebellar circuit by harmaline uncovered disturbances in SCA2-58Q PC activity pattern and in the complex spike shape when compared with age-matched wild-type cells. The abnormalities in the CF-PC circuitry were aggravated with age. We propose that alterations in CF-PC circuitry represent one of potential causes of ataxic symptoms in SCA2 and in other SCAs.


Cerebellum/physiopathology , Neurons/physiology , Olivary Nucleus/physiopathology , Spinocerebellar Ataxias/physiopathology , Aging/drug effects , Aging/physiology , Animals , Central Nervous System Stimulants/pharmacology , Cerebellum/drug effects , Disease Models, Animal , Harmaline/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Transgenic , Neural Pathways/drug effects , Neural Pathways/physiopathology , Neurons/drug effects , Olivary Nucleus/drug effects
15.
FEBS J ; 285(19): 3547-3565, 2018 10.
Article En | MEDLINE | ID: mdl-29253316

The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.


Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Neurodegenerative Diseases/physiopathology , Animals , Humans , Neurodegenerative Diseases/metabolism
16.
FEBS Open Bio ; 6(3): 168-78, 2016 03.
Article En | MEDLINE | ID: mdl-27047745

An expansion of polyglutamine (polyQ) sequence in ataxin-3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ-containing carboxy-terminal fragment of human ataxin-3 was solved at 2.2-Å resolution. The Atxn3 carboxy-terminal fragment including 14 glutamine residues adopts both random coil and α-helical conformations in the crystal structure. The polyQ sequence in α-helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen-bond interactions between glutamine side chains along the axis of the polyQ α-helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ-structural characteristics that likely underlie the pathogenesis of polyQ-expansion disorders.

17.
J Neurophysiol ; 115(6): 2840-51, 2016 06 01.
Article En | MEDLINE | ID: mdl-26984424

Cerebellar Purkinje cells (PCs) are primarily affected in many spinocerebellar ataxias (SCA). In this study we investigated functional activity of PCs in transgenic mouse model of SCA2, a polyglutamine neurodegenerative hereditary disorder. In our studies we used extracellular single-unit recording method to compare spontaneous activity of PCs in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered that the fraction of PCs with bursting and an irregular pattern of spontaneous activity dramatically increases in aged SCA2-58Q mice compared with wild-type littermates. Small-conductance calcium-activated potassium (SK) channels play an important role in determining firing rate of PCs. Indeed, we demonstrated that intraperitoneal (IP) injection of SK channel inhibitor NS8593 induces an irregular pattern of PC activity in wild-type mice. Furthermore, we demonstrated that IP injection of SK channel-positive modulator chlorzoxazone (CHZ) decreases spontaneous firing rate of cerebellar PCs. Finally, we have shown that IP injections with CHZ normalize firing activity of cerebellar PCs from aging SCA2-58Q mice. We propose that alterations in PC firing patterns is one of potential causes of ataxic symptoms in SCA2 and in other SCAs and that positive modulators of SK channels can be used to normalize activity of PCs and alleviate ataxic phenotype in patients with SCA.


Purkinje Cells/physiology , Spinocerebellar Ataxias/physiopathology , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Aging/physiology , Animals , Chlorzoxazone/pharmacology , Disease Models, Animal , Injections, Intraperitoneal , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Microelectrodes , Neurotransmitter Agents/pharmacology , Purkinje Cells/drug effects , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Small-Conductance Calcium-Activated Potassium Channels/metabolism
...