Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Pharm ; 657: 124133, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38642620

Residence time distribution (RTD) method has been widely used in the pharmaceutical manufacturing for understanding powder dynamics within unit operations and continuous integrated manufacturing lines. The dynamics thus captured is then used to develop predictive models for unit operations and important RTD-based applications ensuring product quality assurance. Despite thorough efforts in tracer selection, data acquisition, and calibration model development to obtain tracer concentration profiles for RTD studies, there can exist significant noise in these profiles. This noise can make it challenging to identify the underlying signal and get a representative RTD of the system under study. Such concerns have previously indicated the importance of noise handling for RTD measurements in literature. However, the literature does not provide sufficient information on noise handling or data treatment strategies for RTD studies. To this end, we investigate the impact of varying levels of noise using different tracers on measurement of RTD profile and its applications. We quantify the impact of different denoising methods (time and frequency averaging methods). Through this investigation, we see that Savitsky Golay filtering turns out to a good method for denoising RTD profiles despite varying noise levels. The investigation is performed such that the key features of the RTD profile (which are important for RTD based applications) are preserved. Subsequently, we also investigate the impact of denoising on RTD-based applications such as out-of-specification (OOS) analysis and RTD modeling. The results show that the degree of noise levels considered in this work do not significantly impact the RTD-based applications.

2.
Int J Pharm ; 634: 122653, 2023 Mar 05.
Article En | MEDLINE | ID: mdl-36716830

Residence time distribution (RTD) has been widely applied across various fields of chemical engineering, including pharmaceutical manufacturing, for applications such as material traceability, quality assurance, system health monitoring, and fault detection. Determination of a representative RTD, in principle, requires an accurate process analytical technology (PAT) procedure capturing the entire range of tracer concentrations from zero to maximum. Such a wide concentration range creates at least two problems: i) decreased accuracy of the model across the entire range of concentrations, relating to limit of quantification, and ii) ambiguity associated with the detection of the tracer for low concentration levels, relating to limit of detection (LOD). These problems affect not only the RTD profile itself, but also RTD-based applications, which can potentially lead to erroneous conclusions. This article seeks to minimize the impact of these problems by understanding the relative importance of different features of RTD on the detection of out-of-specification (OOS) products. In this work, the RTD obtained experimentally was truncated at different levels, to investigate the impact of the truncation of RTD on funnel plots for OOS detection. The main finding is that the tail of the RTD can be truncated with no loss of accuracy in the determination of exclusion intervals. This enables the manufacturing scientist to focus entirely on the peak region, maximizing the accuracy of chemometric models.


Chemometrics , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Lot Quality Assurance Sampling , Limit of Detection
3.
Int J Pharm ; 631: 122487, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36521636

During the development of pharmaceutical manufacturing processes, detailed systems-based analysis and optimization are required to control and regulate critical quality attributes within specific ranges, to maintain product performance. As discussions on carbon footprint, sustainability, and energy efficiency are gaining prominence, the development and utilization of these concepts in pharmaceutical manufacturing are seldom reported, which limits the potential of pharmaceutical industry in maximizing key energy and performance metrics. Based on an integrated modeling and techno-economic analysis framework previously developed by the authors (Sampat et al., 2022), this study presents the development of a combined sensitivity analysis and optimization approach to minimize energy consumption while maintaining product quality and meeting operational constraints in a pharmaceutical process. The optimal input process conditions identified were validated against experiments and good agreement resulted between simulated and experimental data. The results also allowed for a comparison of the capital and operational costs for batch and continuous manufacturing schemes under nominal and optimized conditions. Using the nominal batch operations as a basis, the optimized batch operation results in a 71.7% reduction of energy consumption, whereas the optimized continuous case results in an energy saving of 83.3%.


Drug Industry , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Drug Industry/methods , Physical Phenomena , Pharmaceutical Preparations
4.
Int J Pharm ; 628: 122326, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36273702

Residence time distribution (RTD) is a probability density function that describes the time materials spend inside a system. It is a promising tool for mixing behavior characterization, material traceability, and real-time quality control in pharmaceutical manufacturing. However, RTD measurements are accompanied with some degree of uncertainties because of process fluctuation and variation, measurement error, and experimental variation among different replicates. Due to the strict quality control requirements of drug manufacturing, it is essential to consider RTD uncertainty and characterize its effects on RTD-based predictions and applications. Towards this end, two approaches were developed in this work, namely model-based and data-based approaches. The model-based approach characterizes the RTD uncertainty via RTD model parameters and uses Monte Carlo sampling to propagate and analyze the effects on downstream processes. To avoid bias and possible reduction of uncertainty during model fitting, the data-based approach characterizes RTD uncertainty using the raw experimental data and utilizes interval arithmetic for uncertainty propagation. A constrained optimization approach was also proposed to overcome the drawback of interval arithmetic in the data-based approach. Results depict probability intervals around the upstream disturbance tracking profile and the funnel plot, facilitating better decision-making for quality control under uncertainty.


Emollients , Technology, Pharmaceutical , Powders , Technology, Pharmaceutical/methods , Uncertainty , Monte Carlo Method , Quality Control
5.
Int J Pharm ; 610: 121248, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34748808

While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA's support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber, 2011), it is critical to enable full utilization of CM technology for robust production and commercialization (Schaber, 2011; Byrn, 2015). To do so, an important prerequisite is to obtain a detailed understanding of overall process characteristics to develop cost-effective and accurate predictive models for unit operations and process flowsheets. These models are utilized to predict product quality and maintain desired manufacturing efficiency (Ierapetritou et al., 2016). Residence time distribution (RTD) has been a widely used tool to characterize the extent of mixing in pharmaceutical unit operations (Vanhoorne, 2020; Rogers and Ierapetritou, 2015; Tezyk et al., 2015) and manufacturing lines and develop computationally cheap predictive models. These models developed using RTD have been demonstrated to be crucial for various flowsheet applications (Kruisz, 2017; Martinetz, 2018; Tian, 2021). Though extensively used in the literature (Gao et al., 2012), the implementation, execution, evaluation, and assessment of RTD studies has not been standardized by regulatory agencies and can thus lead to ambiguity regarding their accurate implementation. To address this issue and subsequently prevent unforeseen errors in RTD implementation, the presented article aims to aid in developing standardized guidelines through a detailed review and critical discussion of RTD studies in the pharmaceutical manufacturing literature. The review article is divided into two main sections - 1) determination of RTD including different steps for RTD evaluation including experimental approach, data acquisition and pre-treatment, RTD modeling, and RTD metrics and, 2) applications of RTD for solid dose manufacturing. Critical considerations, pertaining to the limitations of RTDs for solid dose manufacturing, are also examined along with a perspective discussion of future avenues of improvement.


Pharmaceutical Preparations , Technology, Pharmaceutical , Excipients
6.
Int J Pharm ; 602: 120643, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33901598

To modernize drug manufacturing, the pharmaceutical industry has been moving towards implementing emerging technologies to enhance manufacturing robustness and process reliability for production of regulation compliant drug products. Although different science and risk based technologies, like Quality-by-Design, have been used to illustrate their potential, there still exist some underlying obstacles. Specifically, for the production of oral solid drug products, an in-depth process understanding, and predictive modeling of powder mixing in continuous powder blenders is one such major obstacle and originates from the current limitations of the experimental and modeling approaches. Though first principle based discrete element modeling (DEM) approach can address the above issues, it can get very computationally intensive which limits its applications for predictive modeling. In the proposed work, we aim to address this limitation using a multi-zonal compartment modeling approach, which is constructed from DEM. The approach provides a computationally efficient and mechanistically informed hybrid model. The application of the proposed approach is first demonstrated for a periodic section of the blender, followed by its extension for the entire continuous powder blender and the obtained model predictions are validated. The proposed approach provides an overall assessment of powder mixing along axial and radial directions, which is an important requirement for the quantification of blend uniformity. Given the low computational cost, the developed model can further be integrated within the predictive flowsheet model of the manufacturing line.


Chemistry, Pharmaceutical , Emollients , Powders , Reproducibility of Results , Technology, Pharmaceutical
7.
Int J Pharm ; 585: 119427, 2020 Jul 30.
Article En | MEDLINE | ID: mdl-32473969

Research emphases on extensive experimental studies and modeling efforts have been on the rise for the development of accurate predictive models of pharmaceutical unit operations and 'digital-twin' framework for continuous manufacturing lines. These exhaustive studies have been conducted at different process conditions to acquire comprehensive knowledge of effects of process parameters on the overall process dynamics. However, there still lacks a detailed understanding of material property effects of pharmaceutical powders on process operation. To address this issue, a discrete element modeling (DEM) approach combined with material calibration is applied for simulation of feeder unit to obtain particle-level insight into effects of material properties on feeder performance with focus on particle flow and powder mixing within the feeder unit. Bulk calibration is implemented to accurately represent powder material properties within the DEM framework. Different refill situations are simulated using DEM to observe powder mixing, measured at the outlet. Feeder DEM simulations are further applied to understand correlations of material properties on feeder operation. These studies provide a detailed physical insight and particle-scale information into the powder mechanics during powder feeding operation.


Powders/chemistry , Powders/standards , Systems Analysis , Technology, Pharmaceutical/methods , Calibration , Computer Simulation , Drug Compounding/methods , Drug Compounding/standards , Humans , Particle Size , Technology, Pharmaceutical/standards
...