Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Front Oncol ; 12: 925078, 2022.
Article En | MEDLINE | ID: mdl-36518323

Purpose/Objectives: To assess adverse events (AEs) and disease-specific outcomes after proton therapy for isolated local-regional recurrence (LRR) of breast cancer after mastectomy without prior radiotherapy (RT). Materials/Methods: Patients were identified from a multi-institutional prospective registry and included if diagnosed with invasive breast cancer, initially underwent mastectomy without adjuvant RT, experienced an LRR, and subsequently underwent salvage treatment, including proton therapy. Follow-up and cancer outcomes were measured from the date of RT completion. Results: Nineteen patients were included. Seventeen patients were treated with proton therapy to the chest wall and comprehensive regional lymphatics (17/19, 90%). Maximum grade AE was grade 2 in 13 (69%) patients and grade 3 in 4 (21%) patients. All patients with grade 3 AE received > 60 GyE (p=0.04, Spearman correlation coefficient=0.5). At the last follow-up, 90% of patients were alive with no LRR or distant recurrence. Conclusions: For breast cancer patients with isolated LRR after initial mastectomy without adjuvant RT, proton therapy is well-tolerated in the salvage setting with excellent loco-regional control. All grade 3 AEs occurred in patients receiving > 60 GyE.

2.
Front Oncol ; 12: 920739, 2022.
Article En | MEDLINE | ID: mdl-36091145

Background: We present Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) for patients undergoing adjuvant radiotherapy for breast cancer with curative intent. We describe the frequency and severity of PRO-CTCAE and analyze them with respect to dose fractionation. Methods: Patients were included in this study if they were treated with curative intent for breast cancer and enrolled on a prospective registry. Patients must have completed at least one baseline and one post-radiation survey that addressed PRO-CTCAE. For univariate and multivariate analysis, categorical variables were analyzed by Fisher's exact test and continuous variables by Wilcoxon rank sum test. PRO-CTCAE items graded ≥2 and ≥3 were analyzed between patients who received hypofractionation (HF) versus standard conventional fractionation (CF) therapy by the Chi-square test. Results: Three hundred thirty-one patients met inclusion criteria. Pathologic tumor stage was T1-T2 in 309 (94%) patients. Eighty-seven (29%) patients were node positive. Two hundred forty-seven patients (75%) experienced any PRO-CTCAE grade ≥2, and 92 (28%) patients experienced any PRO-CTCAE grade ≥3. CF was found to be associated with an increased risk of grade ≥3 skin toxicity, swallowing, and nausea (all p < 0.01). HF (OR 0.48, p < 0.01) was significant in the multivariate model for decreased risk of any occurrence of PRO-CTCAE ≥3. Conclusions: Our study reports one of the first clinical experiences utilizing multiple PRO-CTCAE items for patients with breast cancer undergoing radiation therapy with curative intent. Compared with CF, HF was associated with a significant decrease in any PRO-CTCAE ≥3 after multivariate analysis.

3.
Int J Part Ther ; 8(4): 37-46, 2022.
Article En | MEDLINE | ID: mdl-35530190

Purpose and Objectives: With increasing use of hypofractionation and extreme hypofractionation for prostate cancer, rectal dose-volume histogram (DVH) parameters that apply across dose fractionations may be helpful for treatment planning in clinical practice. We present an exploratory analysis of biologically effective rectal dose (BED) and equivalent rectal dose in 2 Gy fractions (EQD2) for rectal bleeding in patients treated with proton therapy across dose fractionations. Materials and Methods: From 2016 to 2018, 243 patients with prostate cancer were treated with definitive proton therapy. Rectal DVH parameters were obtained from treatment plans, and rectal bleeding events were recorded. The BED and EQD2 transformations were applied to each rectal DVH parameter. Univariate analysis using logistic regression was used to determine DVH parameters that were significant predictors of grade ≥ 2 rectal bleeding. Youden index was used to determine optimum cutoffs for clinically meaningful DVH constraints. Stepwise model-selection criteria were then applied to fit a "best" multivariate logistic model for predicting Common Terminology Criteria for Adverse Events grade ≥ 2 rectal bleeding. Results: Conventional fractionation, hypofractionation, and extreme hypofractionation were prescribed to 117 (48%), 84 (34%), and 42 (17.3%) patients, respectively. With a median follow-up of 20 (2.5-40) months, 10 (4.1%) patients experienced rectal bleeding. On univariate analysis, multiple rectal DVH parameters were significantly associated with rectal bleeding across BED, EQD2, and nominal doses. The BED volume receiving 55 Gy > 13.91% was found to be statistically and clinically significant. The BED volume receiving 55 Gy remained statistically significant for an association with rectal bleeding in the multivariate model (odds ratio, 9.81; 95% confidence interval, 2.4-40.5; P = .002). Conclusion: In patients undergoing definitive proton therapy for prostate cancer, dose to the rectum and volume of the rectum receiving the dose were significantly associated with rectal bleeding across conventional fractionation, hypofractionation, and extreme hypofractionation when using BED and EQD2 transformations.

4.
Radiat Oncol J ; 39(2): 122-128, 2021 Jun.
Article En | MEDLINE | ID: mdl-34619829

PURPOSE: To analyze rectal dose and changes in quality of life (QOL) measured with the Expanded Prostate and Cancer Index Composite (EPIC) bowel domain in patients being treated for prostate cancer with curative-intent proton beam therapy (PBT) within a large single-institution prospective registry. MATERIALS AND METHODS: Data was collected from 243 patients with localized prostate cancer treated with PBT from 2016 to 2018. The EPIC survey was administered at baseline, end-of-treatment, 3, 6, and 12 months, then annually. Dose-volume histogram (DVH) parameters for the rectum were computed, and rectal dose was analyzed using BED (α/ß = 3), EQD2Gy, and total dose. Repeated measures mixed models were implemented to determine the effect of patient, clinical, and treatment factors (including DVH) on patient-reported bowel symptom burden (EPIC-Bowel). RESULTS: Treatment overall resulted in changes in EPIC-Bowel scores (baseline score = 93.7), most notably at end-of-treatment (90.6) and 12 months (89.7). However, they returned to baseline at 36 months (92.9). On multivariate modeling, rectal BED D25 (Gy) ≥23% was significantly associated with decline in QOL scores measuring bother (p < 0.01; 4.06 points different). CONCLUSION: Rectal doses, specifically BED D25 (Gy) ≥23%, are significantly associated with decline in bowel bother-related QOL in patients undergoing definitive radiotherapy for localized prostate cancer. This study demonstrates BED as an independent predictor of bowel QOL across dose fractionations of PBT.

5.
Adv Radiat Oncol ; 6(4): 100675, 2021.
Article En | MEDLINE | ID: mdl-34409199

PURPOSE: Our purpose was to assess the safety and efficacy of intensity modulated proton therapy (IMPT) for the treatment of hepatocellular carcinoma (HCC). METHODS AND MATERIALS: A retrospective review was conducted on all patients who were treated with IMPT for HCC with curative intent from June 2015 to December 2018. All patients had fiducials placed before treatment. Inverse treatment planning used robust optimization with 2 to 3 beams. The majority of patients were treated in 15 fractions (n = 30, 81%, 52.5-67.5 Gy, relative biological effectiveness), whereas the remainder were treated in 5 fractions (n = 7, 19%, 37.5-50 Gy, relative biological effectiveness). Daily image guidance consisted of orthogonal kilovoltage x-rays and use of a 6° of freedom robotic couch. Outcomes (local control, progression free survival, and overall survival) were determined using Kaplan-Meier methods. RESULTS: Thirty-seven patients were included. The median follow-up for living patients was 21 months (Q1-Q3, 17-30 months). Pretreatment Child-Pugh score was A5-6 in 70% of patients and B7-9 in 30% of patients. Nineteen patients had prior liver directed therapy for HCC before IMPT. Eight patients (22%) required a replan during treatment, most commonly due to inadequate clinical target volume coverage. One patient (3%) experienced a grade 3 acute toxicity (pain) with no recorded grade 4 or 5 toxicities. An increase in Child-Pugh score by ≥ 2 within 3 months of treatment was observed in 6 patients (16%). At 1 year, local control was 94%, intrahepatic control was 54%, progression free survival was 35%, and overall survival was 78%. CONCLUSIONS: IMPT is safe and feasible for treatment of HCC.

6.
Med Phys ; 48(8): 4636-4647, 2021 Aug.
Article En | MEDLINE | ID: mdl-34058026

PURPOSE: To compare the dosimetric performances of small-spot three-dimensional (3D) and four-dimensional (4D) robustly optimized intensity-modulated proton (IMPT) plans in the presence of uncertainties and interplay effect simultaneously for distal esophageal carcinoma. METHOD AND MATERIALS: Thirteen (13) patients were selected and re-planned with small-spot ( σ  ~ 2-6 mm) 3D and 4D robust optimization in IMPT, respectively. The internal clinical target volumes (CTVhigh3d , CTVlow3d ) were used in 3D robust optimization. Different CTVs (CTVhigh4d , CTVlow4d ) were generated by subtracting an inner margin of the motion amplitudes in three cardinal directions from the internal CTVs and used in 4D robust optimization. All patients were prescribed the same dose to CTVs (50 Gy[RBE] for CTVhigh3d /CTVhigh4d and 45 Gy[RBE] for CTVlow3d /CTVlow4d ). Dose-volume histogram (DVH) indices were calculated to assess plan quality. Comprehensive plan robustness evaluations that consisted of 300 perturbed scenarios (10 different motion patterns to consider irregular motion (sampled from a Gaussian distribution) and 30 different uncertainties scenarios (sampled from a 4D uniform distribution) combined), were performed to quantify robustness to uncertainties and interplay effect simultaneously. Wilcoxon signed-rank test was used for statistical analysis. RESULTS: Compared to 3D robustly optimized plans, 4D robustly optimized plans had statistically improved target coverage and better sparing of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) in the nominal scenario. 4D robustly optimized plans had better robustness in target dose coverage (CTVhigh4d V100% , P = 0.002) and the protection of lungs and heart (heart Dmean , P = 0.001; heart V30Gy[RBE] , P = 0.001) when uncertainties and interplay effect were considered simultaneously. CONCLUSIONS: Even with small spots in IMPT, 4D robust optimization outperformed 3D robust optimization in terms of normal tissue protection and robustness to uncertainties and interplay effect simultaneously. Our findings support the use of 4D robust optimization to treat distal esophageal carcinoma with small spots in IMPT.


Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
7.
Breast J ; 27(5): 466-471, 2021 05.
Article En | MEDLINE | ID: mdl-33715231

Study conducted to determine frequency and timing of unplanned breast implant removal after mastectomy, reconstruction, and postmastectomy radiation (PMRT). From 2010-2017, 52 patients underwent mastectomy, reconstruction, and PMRT. With median follow-up of 3.1 years, 23 patients (44%) experienced implant removal. Implant removal occurred in 9 (17%) patients before starting PMRT and 14 (27%) patients after starting PMRT. Implant removal rates were similar for hypofractionated PMRT compared with standard fractionation and for proton compared with photon PMRT. Implant removal is common for women undergoing mastectomy and reconstruction followed by PMRT. The risk is clinically significant even before starting radiation.


Breast Implants , Breast Neoplasms , Mammaplasty , Breast Implants/adverse effects , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Female , Follow-Up Studies , Humans , Mammaplasty/adverse effects , Mastectomy , Postoperative Complications , Radiotherapy, Adjuvant , Treatment Outcome
8.
Int J Radiat Oncol Biol Phys ; 110(4): 1189-1199, 2021 07 15.
Article En | MEDLINE | ID: mdl-33621660

PURPOSE: We proposed a novel tool-a dose linear energy transfer (LET)-volume histogram (DLVH)-and performed an exploratory study to investigate rectal bleeding in prostate cancer treated with intensity modulated proton therapy. METHODS AND MATERIALS: The DLVH was constructed with dose and LET as 2 axes, and the normalized volume of the structure was contoured in the dose-LET plane as isovolume lines. We defined the DLVH index, DLv%(d,l) (ie, v% of the structure) to have a dose of ≥d Gy and an LET of ≥l keV/µm, similar to the dose-volume histogram index Dv%. Nine patients with prostate cancer with rectal bleeding (Common Terminology Criteria for Adverse Events grade ≥2) were included as the adverse event group, and 48 patients with no complications were considered the control group. A P value map was constructed by comparison of the DLVH indices of all patients between the 2 groups using the Mann-Whitney U test. Dose-LET volume constraints (DLVCs) were derived based on the P value map with a manual selection procedure facilitated by Spearman's correlation tests. The obtained DLVCs were further cross-validated using a multivariate support vector machine (SVM)-based normal tissue complication probability (NTCP) model with an independent testing data set composed of 8 adverse event and 13 control patients. RESULTS: We extracted 2 DLVC constraints. One DLVC was obtained, Vdose/LETboundary:2.5keVµmat 75 Gy to 3.2keVµmat8.65Gy <1.27% (DLVC1), revealing a high LET volume effect. The second DLVC, V(72.2Gy,0keVµm) < 2.23% (DVLC2), revealed a high dose volume effect. The SVM-based NTCP model with 2 DLVCs provided slightly superior performance than using dose only, with an area under the curve of 0.798 versus 0.779 for the testing data set. CONCLUSIONS: Our results demonstrated the importance of rectal "hot spots" in both high LET (DLVC1) and high dose (DLVC2) in inducing rectal bleeding. The SVM-based NTCP model confirmed the derived DLVCs as good predictors for rectal bleeding when intensity modulated proton therapy is used to treat prostate cancer.


Linear Energy Transfer , Proton Therapy/adverse effects , Radiation Dosage , Radiotherapy, Intensity-Modulated/adverse effects , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
Adv Radiat Oncol ; 5(5): 871-879, 2020.
Article En | MEDLINE | ID: mdl-33083649

PURPOSE: Intensity modulated proton beam radiation therapy (IMPT) has a clinically significant dosimetric advantage over intensity modulated photon radiation therapy (IMRT) for the treatment of patients with esophageal cancer, particularly for sparing the heart and lungs. We compared acute radiation therapy-related toxicities and short-term clinical outcomes of patients with esophageal cancer who received treatment with IMPT or IMRT. METHODS AND MATERIALS: We retrospectively reviewed the electronic health records of consecutive adult patients with esophageal cancer who underwent concurrent chemoradiotherapy with IMPT or IMRT in the definitive or neoadjuvant setting from January 1, 2014, through June 30, 2018, with additional follow-up data collected through January 31, 2019. Treatment-related toxicities were evaluated per the Common Terminology Criteria for Adverse Events, version 4. Survival outcomes were estimated with the Kaplan-Meier method. RESULTS: A total of 64 patients (32 per group) were included (median follow-up time: 10 months for IMPT patients vs 14 months for IMRT patients). The most common radiation therapy regimen was 45 Gy in 25 fractions, and 80% of patients received a simultaneous integrated boost to a median cumulative dose of 50 Gy. Similar numbers of IMPT patients (n = 15; 47%) and IMRT patients (n = 18; 56%) underwent surgery (P = .07), with no difference in pathologic complete response rates (IMPT: n = 5; 33% vs IMRT: n = 7; 39%; P = .14). At 1 year, the clinical outcomes also were similar for IMPT and IMRT patients, respectively. Local control was 92% versus 84% (P = .87), locoregional control 92% versus 80% (P = .76), distant metastasis-free survival 87% versus 65% (P = .08), progression-free survival 71% versus 45% (P = .15), and overall survival 74% versus 71% (P = .62). The rate of acute treatment-related grade 3 toxicity was similar between the groups (P = .71). CONCLUSIONS: In our early experience, IMPT is a safe and effective treatment when administered as part of definitive or trimodality therapy. Longer follow-up is required to evaluate the effectiveness of IMPT.

11.
J Appl Clin Med Phys ; 21(11): 141-152, 2020 Nov.
Article En | MEDLINE | ID: mdl-33058523

PURPOSE: To compare the dosimetric performances of intensity-modulated proton therapy (IMPT) plans generated with two different beam angle configurations (the Right-Left oblique posterior beams and the Superior-Inferior oblique posterior beams) for the treatment of distal esophageal carcinoma in the presence of uncertainties and interplay effect. METHODS AND MATERIALS: Twenty patients' IMPT plans were retrospectively selected, with 10 patients treated with the R-L oblique posterior beams (Group R-L) and the other 10 patients treated with the S-I oblique posterior beams (Group S-I). Patients in both groups were matched by their clinical target volumes (CTVs-high and low dose levels) and respiratory motion amplitudes. Dose-volume-histogram (DVH) indices were used to assess plan quality. DVH bandwidth was calculated to evaluate plan robustness. Interplay effect was quantified using four-dimensional (4D) dynamic dose calculation with random respiratory starting phase of each fraction. Normal tissue complication probability (NTCP) for heart, liver, and lung was calculated, respectively, to estimate the clinical outcomes. Wilcoxon signed-rank test was used for statistical comparison between the two groups. RESULTS: Compared with plans in Group R-L, plans in Group S-I resulted in significantly lower liver Dmean and lung V30Gy[RBE] with slightly higher but clinically acceptable spinal cord Dmax . Similar plan robustness was observed between the two groups. When interplay effect was considered, plans in Group S-I performed statistically better for heart Dmean and V30Gy[RBE] , lung Dmean and V5Gy[RBE] , and liver Dmean , with slightly increased but clinically acceptable spinal cord Dmax . NTCP for liver was significantly better in Group S-I. CONCLUSIONS: IMPT plans in Group S-I have better sparing of liver, heart, and lungs at the slight cost of spinal cord maximum dose protection, and are more interplay-effect resilient compared to IMPT plans in Group R-L. Our study supports the routine use of the S-I oblique posterior beams for the treatments of distal esophageal carcinoma.


Carcinoma , Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
12.
Med Phys ; 46(11): 4755-4762, 2019 Nov.
Article En | MEDLINE | ID: mdl-31498885

PURPOSE: Approximate dose calculation methods were used in the nominal dose distribution and the perturbed dose distributions due to uncertainties in a commercial treatment planning system (CTPS) for robust optimization in intensity-modulated proton therapy (IMPT). We aimed to investigate whether the approximations influence plan quality, robustness, and interplay effect of the resulting IMPT plans for the treatment of locally advanced lung cancer patients. MATERIALS AND METHODS: Ten consecutively treated locally advanced nonsmall cell lung cancer (NSCLC) patients were selected. Two IMPT plans were created for each patient using our in-house developed TPS, named "Solo," and also the CTPS, EclipseTM (Varian Medical Systems, Palo Alto, CA, USA), respectively. The plans were designed to deliver prescription doses to internal target volumes (ITV) drawn by a physician on averaged four-dimensional computed tomography (4D-CT). Solo plans were imported back to CTPS, and recalculated in CTPS for fair comparison. Both plans were further verified for each patient by recalculating doses in the inhalation and exhalation phases to ensure that all plans met clinical requirements. Plan robustness was quantified on all phases using dose-volume-histograms (DVH) indices in the worst-case scenario. The interplay effect was evaluated for every plan using an in-house developed software, which randomized starting phases of each field per fraction and accumulated dose in the exhalation phase based on the patient's breathing motion pattern and the proton spot delivery in a time-dependent fashion. DVH indices were compared using Wilcoxon rank-sum test. RESULTS: Compared to the plans generated using CTPS on the averaged CT, Solo plans had significantly better target dose coverage and homogeneity (normalized by the prescription dose) in the worst-case scenario [ITV D95% : 98.04% vs 96.28%, Solo vs CTPS, P = 0.020; ITV D5% -D95% : 7.20% vs 9.03%, P = 0.049] while all DVH indices were comparable in the nominal scenario. On the inhalation phase, Solo plans had better target dose coverage and cord Dmax in the nominal scenario [ITV D95% : 99.36% vs 98.45%, Solo vs CTPS, P = 0.014; cord Dmax : 20.07 vs 23.71 Gy(RBE), P = 0.027] with better target coverage and cord Dmax in the worst-case scenario [ITV D95% : 97.89% vs 96.47%, Solo vs CTPS, P = 0.037; cord Dmax : 24.57 vs 28.14 Gy(RBE), P = 0.037]. On the exhalation phase, similar phenomena were observed in the nominal scenario [ITV D95% : 99.63% vs 98.87%, Solo vs CTPS, P = 0.037; cord Dmax : 19.67 vs 23.66 Gy(RBE), P = 0.039] and in the worst-case scenario [ITV D95% : 98.20% vs 96.74%, Solo vs CTPS, P = 0.027; cord Dmax : 23.47 vs 27.93 Gy(RBE), P = 0.027]. In terms of interplay effect, plans generated by Solo had significantly better target dose coverage and homogeneity, less hot spots, and lower esophageal Dmean , and cord Dmax [ITV D95% : 101.81% vs 98.68%, Solo vs CTPS, P = 0.002; ITV D5% -D95% : 2.94% vs 7.51%, P = 0.002; cord Dmax : 18.87 vs 22.29 Gy(RBE), P = 0.014]. CONCLUSIONS: Solo-generated IMPT plans provide improved cord sparing, better target robustness in all considered phases, and reduced interplay effect compared with CTPS. Consequently, the approximation methods currently used in commercial TPS programs may have space for improvement in generating optimal IMPT plans for patient cases with locally advanced lung cancer.


Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/physiopathology , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Quality Control , Respiration , Time Factors
13.
J Appl Clin Med Phys ; 20(7): 15-27, 2019 Jul.
Article En | MEDLINE | ID: mdl-31112371

BACKGROUND: Esophageal carcinoma is the eighth most common cancer in the world. Volumetric-modulated arc therapy (VMAT) is widely used to treat distal esophageal carcinoma due to high conformality to the target and good sparing of organs at risk (OAR). It is not clear if small-spot intensity-modulated proton therapy (IMPT) demonstrates a dosimetric advantage over VMAT. In this study, we compared dosimetric performance of VMAT and small-spot IMPT for distal esophageal carcinoma in terms of plan quality, plan robustness, and interplay effects. METHODS: 35 distal esophageal carcinoma patients were retrospectively reviewed; 19 patients received small-spot IMPT and the remaining 16 of them received VMAT. Both plans were generated by delivering prescription doses to clinical target volumes (CTVs) on phase-averaged 4D-CT's. The dose-volume-histogram (DVH) band method was used to quantify plan robustness. Software was developed to evaluate interplay effects with randomized starting phases for each field per fraction. DVH indices were compared using Wilcoxon rank-sum test. For fair comparison, all the treatment plans were normalized to have the same CTVhigh D95% in the nominal scenario relative to the prescription dose. RESULTS: In the nominal scenario, small-spot IMPT delivered statistically significantly lower liver Dmean and V30Gy[RBE] , lung Dmean , heart Dmean compared with VMAT. CTVhigh dose homogeneity and protection of other OARs were comparable between the two treatments. In terms of plan robustness, the IMPT and VMAT plans were comparable for kidney V18Gy[RBE] , liver V30Gy[RBE] , stomach V45Gy[RBE] , lung Dmean , V5Gy[RBE] , and V20Gy[RBE] , cord Dmax and D 0.03 c m 3 , liver Dmean , heart V20Gy[RBE] , and V30Gy[RBE] , but IMPT was significantly worse for CTVhigh D95% , D 2 c m 3 , and D5% -D95% , CTVlow D95% , heart Dmean , and V40Gy[RBE] , requiring careful and experienced adjustments during the planning process and robustness considerations. The small-spot IMPT plans still met the standard clinical requirements after interplay effects were considered. CONCLUSIONS: Small-spot IMPT decreases doses to heart, liver, and total lung compared to VMAT as well as achieves clinically acceptable plan robustness. Our study supports the use of small-spot IMPT for the treatment of distal esophageal carcinoma.


Esophageal Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Organs at Risk/radiation effects , Patient Selection , Prognosis , Radiotherapy Dosage , Retrospective Studies
15.
Nephrol Dial Transplant ; 27(8): 3305-14, 2012 Aug.
Article En | MEDLINE | ID: mdl-22498916

BACKGROUND: Accurate and reliable assessment of kidney quality before transplantation is needed to predict recipient outcomes and to optimize management and allocation of the allograft. The aim of this study was to systematically review the published literature on biomarkers in two mediums (the perfusate from deceased-donor kidneys receiving machine perfusion and deceased-donor urine) that were evaluated for their possible association with outcomes after kidney transplantation. METHODS: We searched the Ovid Medline and Scopus databases using broad keywords related to deceased-donor biomarkers in kidney transplantation (limited to humans and the English language). Studies were included if they involved deceased-donor kidneys, measured perfusate or urine biomarkers and studied a possible relationship between biomarker concentrations and kidney allograft outcomes. Each included article was assessed for methodological quality. RESULTS: Of 1430 abstracts screened, 29 studies met the inclusion criteria. Of these, 23 were studies of perfusate (16 biomarkers examined) and 6 were studies of urine (18 biomarkers examined). Only 3 studies (two perfusate) met the criteria of 'good' quality and only 12 were published since 2000. Perfusate lactate dehydrogenase, glutathione-S-transferase (GST) and aspartate transaminase were all found to be significantly associated with delayed graft function in a majority of their respective studies (6/9, 4/6 and 2/2 studies, respectively). Urine neutrophil gelatinase-associated lipocalin, GST, Trolox-equivalent antioxidant capacity and kidney injury molecule-1 were found to be significantly associated with allograft outcomes in single studies that examined diverse end points. CONCLUSION: Higher quality studies are needed to investigate modern kidney injury biomarkers, to validate novel biomarkers in larger donor populations and to determine the incremental predictive value of biomarkers over traditional clinical variables.


Biomarkers/urine , Kidney Transplantation/physiology , Tissue Donors , Acute-Phase Proteins/analysis , Acute-Phase Proteins/urine , Cadaver , Delayed Graft Function/etiology , Delayed Graft Function/urine , Glutathione Transferase/analysis , Glutathione Transferase/urine , Humans , Hydrogen-Ion Concentration , Kidney Transplantation/adverse effects , L-Lactate Dehydrogenase/analysis , Lactic Acid/urine , Lipocalin-2 , Lipocalins/analysis , Lipocalins/urine , Perfusion , Predictive Value of Tests , Prognosis , Proto-Oncogene Proteins/analysis , Proto-Oncogene Proteins/urine , Transplantation, Homologous , Treatment Outcome
16.
Technol Health Care ; 19(6): 391-400, 2011.
Article En | MEDLINE | ID: mdl-22129940

Internet has provided patients with a new source of variable medical information. Osteoporosis is a major public health concern and providing patients with accurate information regarding diseases and treatment is an essential component of medical care. The primary objective of this study was to assess the quality of Internet based nutrition information for osteoporosis patients. The search items "osteoporosis", "diet", "nutrition", and "bone loss" were entered into the five most consulted search engines: Google, Yahoo, Bing, AOL and Lycos. The first 20 website matches generated by each search engine were 400 and grouped together by URL (uniform resource locators) suffix. 326 websites were excluded from the study as they had insufficient information, nonfunctioning links, websites not in English and duplicate websites. Of the remaining 74 sites, 64% were .Com sites followed by 18% .Org sites. .Org websites received the highest interface and content scores. Raters with healthcare and technical background rated the website interface and quality of content on the internet differently and this could be largely due to different training of the two raters and the manner in which they perceived the content. Health information websites should take into account the users' diverse backgrounds when presenting content to consumers.


Consumer Health Information/methods , Diet/methods , Internet/statistics & numerical data , Osteoporosis , Humans , Information Dissemination , Observer Variation , Patients/statistics & numerical data , Search Engine/statistics & numerical data , User-Computer Interface
...