Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Genes (Basel) ; 14(6)2023 06 17.
Article En | MEDLINE | ID: mdl-37372463

Potential single nucleotide polymorphisms (SNPs) were detected between two chicken breeds (Kashmir favorella and broiler) using deep RNA sequencing. This was carried out to comprehend the coding area alterations, which cause variances in the immunological response to Salmonella infection. In the present study, we identified high impact SNPs from both chicken breeds in order to delineate different pathways that mediate disease resistant/susceptibility traits. Samples (liver and spleen) were collected from Salmonella resistant (K. favorella) and susceptible (broiler) chicken breeds. Salmonella resistance and susceptibility were checked by different pathological parameters post infection. To explore possible polymorphisms in genes linked with disease resistance, SNP identification analysis was performed utilizing RNA seq data from nine K. favorella and ten broiler chickens. A total of 1778 (1070 SNPs and 708 INDELs) and 1459 (859 SNPs and 600 INDELs) were found to be specific to K. favorella and broiler, respectively. Based on our results, we conclude that in broiler chickens the enriched pathways mostly included metabolic pathways like fatty acid metabolism, carbon metabolism and amino acid metabolism (Arginine and proline metabolism), while as in K. favorella genes with high impact SNPs were enriched in most of the immune-related pathways like MAPK signaling pathway, Wnt signaling pathway, NOD-like receptor signaling pathway, etc., which could be a possible resistance mechanism against salmonella infection. In K. favorella, protein-protein interaction analysis also shows some important hub nodes, which are important in providing defense against different infectious diseases. Phylogenomic analysis revealed that indigenous poultry breeds (resistant) are clearly separated from commercial breeds (susceptible). These findings will offer fresh perspectives on the genetic diversity in chicken breeds and will aid in the genomic selection of poultry birds.


Chickens , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , RNA-Seq , Computational Biology , Salmonella/genetics
2.
BMC Genomics ; 24(1): 214, 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37098463

Salmonella enterica serovar typhimurium is the cause of significant morbidity and mortality worldwide that causes economic losses to poultry and is able to cause infection in humans. Indigenous chicken breeds are a potential source of animal protein and have the added advantage of being disease resistant. An indigenous chicken, Kashmir favorella and commercial broiler were selected for understanding the mechanism of disease resistance. Following infection in Kashmir favorella, three differentially expressed genes Nuclear Factor Kappa B (NF-κB1), Forkhead Box Protein O3 (FOXO3) and Paired box 5 (Pax5) were identified. FOXO3, a transcriptional activator, is the potential marker of host resistance in Salmonella infection. NF-κB1 is an inducible transcription factor which lays the foundation for studying gene network of the innate immune response of Salmonella infection in chicken. Pax5 is essential for differentiation of pre-B cells into mature B cell. The real time PCR analysis showed that in response to Salmonella Typhimurium infection a remarkable increase of NF-κB1 (P˂0.01), FOXO3 (P˂0.01) gene expression in liver and Pax5 (P˂0.01) gene expression in spleen of Kashmir favorella was observed. The protein-protein interaction (PPI) and protein-TF interaction network by STRINGDB analysis suggests that FOXO3 is a hub gene in the network and is closely related to Salmonella infection along with NF-κB1. All the three differentially expressed genes (NF-κB1, FOXO3 and PaX5) showed their influence on 12 interacting proteins and 16 TFs, where cyclic adenosine monophosphate Response Element Binding protein (CREBBP), erythroblast transformation-specific (ETSI), Tumour-protein 53(TP53I), IKKBK, lymphoid enhancer-binding factor-1 (LEF1), and interferon regulatory factor-4 (IRF4) play role in immune responses. This study shall pave the way for newer strategies for treatment and prevention of Salmonella infection and may help in increasing the innate disease resistance.


Chickens , Salmonella Infections, Animal , Humans , Animals , Chickens/genetics , Salmonella typhimurium/genetics , Transcription Factors/genetics , Disease Resistance , Salmonella Infections, Animal/genetics , Gene Expression Profiling
3.
Front Oncol ; 12: 841303, 2022.
Article En | MEDLINE | ID: mdl-35273919

SNTA1 signaling axis plays an essential role in cytoskeletal organization and is also implicated in breast cancers. In this study, we aimed to investigate the involvement of actin cytoskeleton in the propagation of SNTA1/p66shc mediated pro-metastatic cascade in breast cancer cells.The effect of actin filament depolymerization on SNTA1-p66Shc interaction and the trimeric complex formation was analyzed using co-immunoprecipitation assays. Immunofluorescence and RhoA activation assays were used to show the involvement of SNTA1-p66Shc interaction in RhoA activation and F-actin organization. Cellular proliferation and ROS levels were assessed using MTT assay and Amplex red catalase assay. The migratory potential was evaluated using transwell migration assay and wound healing assay.We found that cytochalasin D mediated actin depolymerization significantly declines endogenous interaction between SNTA1 and p66Shc protein in MDA-MB-231 cells. Results indicate that SNTA1 and p66Shc interact with RhoA protein under physiological conditions. The ROS generation and RhoA activation were substantially enhanced in cells overexpressing SNTA1 and p66Shc, promoting proliferation and migration in these cells. In addition, we found that loss of SNTA1-p66Shc interaction impaired actin organization, proliferation, and migration in breast cancer cells. Our results demonstrate a novel reciprocal regulatory mechanism between actin modulation and SNTA1/p66Shc/RhoA signaling cascade in human metastatic breast cancer cells.

4.
Protein J ; 40(2): 234-244, 2021 04.
Article En | MEDLINE | ID: mdl-33515365

BACKGROUND: Alpha-1-syntrophin (SNTA1) is emerging as a novel modulator of the actin cytoskeleton. SNTA1 binds to F-actin and regulates intracellular localization and activity of various actin organizing signaling molecules. Aberration in syntrophin signaling has been closely linked with deregulated growth connected to tumor development/metastasis and its abnormal over expression has been observed in breast cancer. In the present work the effect of jasplakinolide, an actin-binding cyclodepsipeptide, on the SNTA1 protein activity and SNTA1 mediated downstream cellular events was studied in MDA-MB-231 breast cancer cell line. METHODS: SNTA1 protein levels and phosphorylation status were determined in MDA-MB-231 cells post jasplakinolide exposure using western blotting and immunoprecipitation techniques respectively. MDA-MB-231 cells were transfected with WT SNTA1 and DM SNTA1 (Y215/229 phospho mutant) and simultaneously treated with jasplakinolide. The effect of jasplakinolide and SNTA1 protein on cell migration was determined using the boyden chamber assay. RESULTS: Jasplakinolide treatment decreases proliferation of MDA-MB-231 cells in both dose and time dependent manner. Results suggest that subtoxic doses of jasplakinolide induce morphological changes in MDA-MB-231 cells from flat spindle shape adherent cells to round weakly adherent forms. Mechanistically, jasplakinolide treatment was found to decrease SNTA1 protein levels and its tyrosine phosphorylation status. Moreover, migratory potential of jasplakinolide treated cells was significantly inhibited in comparison to control cells. CONCLUSION: Our results demonstrate that jasplakinolide inhibits cell migration by impairing SNTA1 functioning in breast cancer cells.


Breast Neoplasms/metabolism , Calcium-Binding Proteins , Cell Movement/drug effects , Depsipeptides , Membrane Proteins , Muscle Proteins , Calcium-Binding Proteins/analysis , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Depsipeptides/pharmacology , Depsipeptides/toxicity , Female , Humans , Membrane Proteins/analysis , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Muscle Proteins/analysis , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Phosphorylation/drug effects
...