Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 52(2): 425-439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37922056

RESUMEN

Patient-specific aortic geometry and its influence on the flow in the vicinity of Transcatheter Aortic Valve (TAV) has been highlighted in numerous studies using both in silico and in vitro experiments. However, there has not yet been a detailed Particle Image Velocimetry (PIV) experiment conducted to quantify the relationship between the geometry, flow downstream of TAV, and the flow in the sinus and the neo-sinus. We tested six different patient-specific aorta models with a 26-mm SAPIEN 3 valve (Edwards Lifesciences, Irvine, CA, USA) in a left heart simulator with coronary flow. Velocities in all three cusps and circulation downstream of TAV were computed to evaluate the influence of the ascending aorta curvature on the flow field. The in vitro analysis showed that the patient-specific aortic curvature had positive correlation to the circulation in the ascending aorta (p = 0.036) and circulation had negative correlation to the particle washout time in the cusps (p = 0.011). These results showed that distinct vortical flow patterns in the ascending aorta as the main jet impinges on the aortic wall causes a recirculation region that facilitates the flow back into the sinus and the neo-sinus, thus reducing the risk of flow stagnation and washout time.


Asunto(s)
Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Velocidad del Flujo Sanguíneo , Aorta , Diseño de Prótesis
2.
Ann Biomed Eng ; 52(2): 386-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37864043

RESUMEN

Congenital heart disease (CHD) accounts for nearly one-third of all congenital defects, and patients often require repeated heart valve replacements throughout their lives, due to failed surgical repairs and lack of durability of bioprosthetic valve implants. This objective of this study is to develop and in vitro test a fetal transcatheter pulmonary valve replacement (FTPVR) using sutureless techniques to attach leaflets, as an option to correct congenital defects such as pulmonary atresia with intact ventricular septum (PA/IVS), in utero. A balloon expandable design was analyzed using computational simulations to identify areas of failure. Five manufactured valves were assembled using the unique sutureless approach and tested in the fetal right heart simulator (FRHS) to evaluate hemodynamic characteristics. Computational simulations showed that the commissural loads on the leaflet material were significantly reduced by changing the attachment techniques. Hemodynamic analysis showed an effective orifice area of 0.08 cm2, a mean transvalvular pressure gradient of 7.52 mmHg, and a regurgitation fraction of 8.42%, calculated over 100 consecutive cardiac cycles. In conclusion, the FTPVR exhibited good hemodynamic characteristics, and studies with biodegradable stent materials are underway.


Asunto(s)
Prótesis Valvulares Cardíacas , Poliésteres , Atresia Pulmonar , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Atresia Pulmonar/cirugía , Corazón Fetal , Diseño de Prótesis , Válvula Aórtica , Resultado del Tratamiento
3.
J Biomed Mater Res A ; 112(4): 586-599, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38018452

RESUMEN

Polymeric heart valves offer the potential to overcome the limited durability of tissue based bioprosthetic valves and the need for anticoagulant therapy of mechanical valve replacement options. However, developing a single-phase material with requisite biological properties and target mechanical properties remains a challenge. In this study, a composite heart valve material was developed where an electrospun mesh provides tunable mechanical properties and a hydrogel coating confers an antifouling surface for thromboresistance. Key biological responses were evaluated in comparison to glutaraldehyde-fixed pericardium. Platelet and bacterial attachment were reduced by 38% and 98%, respectively, as compared to pericardium that demonstrated the antifouling nature of the hydrogel coating. There was also a notable reduction (59%) in the calcification of the composite material as compared to pericardium. A custom 3D-printed hydrogel coating setup was developed to make valve composites for device-level hemodynamic testing. Regurgitation fraction (9.6 ± 1.8%) and effective orifice area (1.52 ± 0.34 cm2 ) met ISO 5840-2:2021 requirements. Additionally, the mean pressure gradient was comparable to current clinical bioprosthetic heart valves demonstrating preliminary efficacy. Although the hemodynamic properties are promising, it is anticipated that the random microarchitecture will result in suboptimal strain fields and peak stresses that may accelerate leaflet fatigue and degeneration. Previous computational work has demonstrated that bioinspired fiber microarchitectures can improve strain homogeneity of valve materials toward improving durability. To this end, we developed advanced electrospinning methodologies to achieve polyurethane fiber microarchitectures that mimic or exceed the physiological ranges of alignment, tortuosity, and curvilinearity present in the native valve. Control of fiber alignment from a random fiber orientation at a normalized orientation index (NOI) 14.2 ± 6.9% to highly aligned fibers at a NOI of 85.1 ± 1.4%. was achieved through increasing mandrel rotational velocity. Fiber tortuosity and curvilinearity in the range of native valve features were introduced through a post-spinning annealing process and fiber collection on a conical mandrel geometry, respectively. Overall, these studies demonstrate the potential of hydrogel-polyurethane fiber composite as a heart valve material. Future studies will utilize the developed advanced electrospinning methodologies in combination with model-directed fabrication toward optimizing durability as a function of fiber microarchitecture.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Hidrogeles , Poliuretanos , Válvulas Cardíacas , Polímeros
4.
J Thorac Cardiovasc Surg ; 164(3): e105-e117, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33342573

RESUMEN

OBJECTIVE: With the recent expanded indication for transcatheter aortic valve replacement to low-risk surgical patients, thrombus formation in the neosinus is of particular interest due to concerns of reduced leaflet motion and long-term transcatheter heart valve durability. Although flow stasis likely plays a role, a direct connection between neosinus flow stasis and thrombus severity is yet to be established. METHODS: Patients (n = 23) were selected to minimize potential confounding factors related to thrombus formation. Patient-specific 3-dimensional reconstructed in vitro models were created to replicate in vivo anatomy and valve deployment using the patient-specific cardiac output and idealized coronary flows. Dye was injected into each neosinus to quantify washout time as a measure of flow stasis. RESULTS: Flow stasis (washout time) showed a significant, positive correlation with thrombus volume in the neosinus (rho = 0.621, P < .0001). Neither thrombus volume nor washout time was significantly different in the left, right, and noncoronary neosinuses (P ≥ .54). CONCLUSIONS: This is the first patient-specific study correlating flow stasis with thrombus volume in the neosinus post-transcatheter aortic valve replacement across multiple valve types and sizes. Neosinus-specific factors create hemodynamic and thrombotic variability within individual patients. Measurement of neosinus flow stasis may guide strategies to improve outcomes in transcatheter aortic valve replacement.


Asunto(s)
Enfermedades de la Aorta , Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Enfermedades de la Aorta/cirugía , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/cirugía , Hemodinámica , Humanos , Trombosis/diagnóstico por imagen , Trombosis/etiología , Trombosis/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/métodos
5.
Ann Biomed Eng ; 48(10): 2400-2411, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32415483

RESUMEN

Thrombosis in post-transcatheter aortic valve replacement (TAVR) patients has been correlated with flow stasis in the neo-sinus. This study investigated the effect of the post-TAVR geometry on flow stasis. Computed tomography angiography of 155 patients who underwent TAVR using a SAPIEN 3 were used to identify patients with and without thrombosis, and quantify thrombus volumes. Six patients with 23-mm SAPIEN 3 valves were then selected from the cohort and used to create patient-specific post-TAVR computational fluid dynamic models. Regions of flow stasis (%Volstasis, velocities below 0.05 m/s) were identified. The results showed that all post-TAVR anatomical measurements were significantly different in patients with and without thrombus, but only sinus diameter had a linear correlation with thrombus volume (r = 0.471, p = 0.008). A linear correlation was observed between %Volstasis and thrombus volume (r = 0.821, p = 0.007). The combination of anatomy and valve deployment created a unique geometry in each patient, which when combined with patient-specific cardiac output, resulted in distinct flow patterns. While parametric studies have shown individual anatomical or deployment metrics may relate to flow stasis, the combined effects of these metrics potentially contributes to the biomechanical environment promoting thrombosis, therefore hemodynamic studies of TAVR should account for these patient-specific factors.


Asunto(s)
Circulación Coronaria , Modelos Cardiovasculares , Reemplazo de la Válvula Aórtica Transcatéter , Anciano , Anciano de 80 o más Años , Válvula Aórtica/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Simulación por Computador , Femenino , Humanos , Masculino , Trombosis/diagnóstico por imagen , Trombosis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...