Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Blood ; 139(11): 1743-1759, 2022 03 17.
Article En | MEDLINE | ID: mdl-34986233

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment of patients with nonmalignant or malignant blood disorders. Its success has been limited by graft-versus-host disease (GVHD). Current systemic nontargeted conditioning regimens mediate tissue injury and potentially incite and amplify GVHD, limiting the use of this potentially curative treatment beyond malignant disorders. Minimizing systemic nontargeted conditioning while achieving alloengraftment without global immune suppression is highly desirable. Antibody-drug-conjugates (ADCs) targeting hematopoietic cells can specifically deplete host stem and immune cells and enable alloengraftment. We report an anti-mouse CD45-targeted-ADC (CD45-ADC) that facilitates stable murine multilineage donor cell engraftment. Conditioning with CD45-ADC (3 mg/kg) was effective as a single agent in both congenic and minor-mismatch transplant models resulting in full donor chimerism comparable to lethal total body irradiation (TBI). In an MHC-disparate allo-HSCT model, pretransplant CD45-ADC (3 mg/kg) combined with low-dose TBI (150 cGy) and a short course of costimulatory blockade with anti-CD40 ligand antibody enabled 89% of recipients to achieve stable alloengraftment (mean value: 72%). When CD45-ADC was combined with pretransplant TBI (50 cGy) and posttransplant rapamycin, cyclophosphamide (Cytoxan), or a JAK inhibitor, 90% to 100% of recipients achieved stable chimerism (mean: 77%, 59%, 78%, respectively). At a higher dose (5 mg/kg), CD45-ADC as a single agent was sufficient for rapid, high-level multilineage chimerism sustained through the 22 weeks observation period. Therefore, CD45-ADC has the potential utility to confer the benefit of fully myeloablative conditioning but with substantially reduced toxicity when given as a single agent or at lower doses in conjunction with reduced-intensity conditioning.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunoconjugates , Animals , Chimerism , Hematopoietic Stem Cell Transplantation/adverse effects , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/toxicity , Mice , Transplantation Conditioning/methods
2.
J Nucl Cardiol ; 26(4): 1327-1344, 2019 08.
Article En | MEDLINE | ID: mdl-29392624

BACKGROUND: Radiolabeled anti-myosin imaging is well-established for imaging doxorubicin-induced cardiotoxicity. However, to enable imaging of drug-induced cardiotoxicity in small experimental animals, pretargeting with bispecific anti-myosin-anti-DTPA-Fab-Fab' and targeting with high-specific radioactivity Tc-99m-DTPA-succinylated-polylysine (DSPL) was developed. METHODS: Mice were injected biweekly with 10 mg/kg Dox or its equivalent as D-Dox-PGA. Tc-99m-DSPL myocardial activity after pretargeting with bsAb-Fab-Fab' was determined after gamma imaging performed at day 7 for Dox-treated mice and day 39 for all others. RESULTS: Mice treated with 10 mg/kg Dox lost 10% total body weight in 1 week and 20% after a second dose. Pretargeted mice treated with 30 mg/kg cumulative D-Dox-PGA dose showed no loss of body weight for the duration of the study. Cardiotoxicity was confirmed by gamma imaging and scintillation counting (1.9 ± 0.25 [mean% ID/g ± SD]) after 1 dose of Dox. Mice injected with 3 × 10 mg/kg Dox equivalent as D-Dox-PGA (0.4 ± 0.04, P < .01) and untreated 2 control groups (0.20 ± 0.05 and 0.19 ± 0.04, P < .01) showed significantly lower myocardial anti-myosin radioactivity relative to the 10 mg/kg Dox group. CONCLUSION: Pretargeting with bsAb-Fab-Fab' and targeting with Tc-99m labeled high-specific activity polymers enabled early visualization of doxorubicin induce cardiotoxicity in mice. Tolerated dose of D-Dox-PGA was greater than to 30 mg/kg Dox-equivalent dose with minimal cardiotoxicity.


Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/diagnostic imaging , Doxorubicin/adverse effects , Tomography, Emission-Computed, Single-Photon , Animals , Antibodies, Bispecific , Cardiotoxicity/etiology , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Pentetic Acid , Polymers , Technetium
3.
Pharm Res ; 34(2): 352-364, 2017 02.
Article En | MEDLINE | ID: mdl-27896591

PURPOSE: LyP-1, a nine-amino-acid tumor homing peptide, selectively binds to its cognate receptor, p32. Overexpression of p32 in certain tumors should allow use of LyP-1 as a targeting agent for the delivery of therapeutic or diagnostic agents. Peptide conjugates are developed for enhanced pre-targeting of MDA-MB-231 breast cancer cells with peptide-antibody bispecific complexes and targeting with multiple-drug/-fluorophore-conjugated nano-polymers. METHODS: LyP-1-anti-DTPA bispecific antibody complexes (LyP-1-bsAbCx) were generated by conjugation of anti-DTPA antibody and LyP-1. LyP-1-doxorubicin (Dox), Dox-DTPA-succinyl-polylysine (Dox-DSPL), Dox-DSPL-LyP-1, DTPA-Dox-poly glutamic acid (D-Dox-PGA) or DTPA-rhodamine conjugated polylysine (DSPL-RITC) were prepared. In vitro therapeutic efficacy and targeting by immunofluorescence in MDA-MB-231 breast cancer cells were assessed with Dox-LyP-1. Immunofluorescence visualization of cancer cells was evaluated after pretargeting with LyP-1-bsAbCx and targeting with DSPL-RITC. RESULTS: Cytotoxicity of Dox-LyP-1 conjugates was significantly greater than free doxorubicin (p < 0.0001). For fluorescent-labeled LyP-1, internalization occurred in 30 min in tumor cells. Fluorescence intensity of two-step targeted cells showed that pretargeting with LyP-1-bsAbC, followed by targeting with DSPL-RITC was greater than non-pretargeted DSPL-RITC (p < 0.05). CONCLUSIONS: Peptide-conjugates are effective targeting agents for MDA-MB-231 breast cancer cells in culture. LyP-1-bsAbCx and Dox-LyP-1 conjugates may allow development of novel targeted cancer therapy and diagnosis.


Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pentetic Acid/administration & dosage , Pentetic Acid/chemistry , Polylysine/administration & dosage , Polylysine/analogs & derivatives , Polylysine/chemistry , Polymers/chemistry
4.
J Drug Target ; 25(5): 436-450, 2017 Jun.
Article En | MEDLINE | ID: mdl-27937085

Drug resistance is a common phenomenon that occurs in cancer chemotherapy. Delivery of chemotherapeutic agents as polymer pro-drug conjugates (PPDCs) pretargeted with bispecific antibodies could circumvent drug resistance in cancer cells. To demonstrate this approach to overcome drug resistance, Paclitaxel (Ptxl)-resistant SKOV3 TR human ovarian- and doxorubicin (Dox)-resistant MCF7 ADR human mammary-carcinoma cell lines were used. Pre-targeting over-expressed biotin or HER2/neu receptors on cancer cells was conducted by biotinylated anti-DTPA or anti-HER2/neu affibody - anti-DTPA Fab bispecific antibody complexes. The targeting PPDCs are either D-Dox-PGA or D-Ptxl-PGA. Cytotoxicity studies demonstrate that the pretargeted approach increases cytotoxicity of Ptxl or Dox in SKOV3 TR or MCF7 ADR resistant cell lines by 5.4 and 27 times, respectively. Epifluorescent microscopy - used to track internalization of D-Dox-PGA and Dox in MCF7 ADR cells - shows that the pretargeted delivery of D-Dox-PGA resulted in a 2- to 4-fold increase in intracellular Dox concentration relative to treatment with free Dox. The mechanism of internalization of PPDCs is consistent with endocytosis. Enhanced drug delivery and intracellular retention following pretargeted delivery of PPDCs resulted in greater tumor cell toxicity in the current in vitro studies.


Antineoplastic Agents/pharmacology , Doxorubicin/administration & dosage , Drug Resistance, Neoplasm/drug effects , Polymers/chemistry , Prodrugs/chemistry , Blotting, Western , Chlorpromazine/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Endocytosis/drug effects , Female , Humans , In Vitro Techniques , MCF-7 Cells
...