Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424737

Toxoplasma gondii, a worldwide prevalent parasite is responsible for causing toxoplasmosis in almost all warm-blooded animals, including humans. Golgi-resident T. gondii aspartic protease 5 (TgASP5) plays an essential role in the maturation and export of the effector proteins those modulate the host immune system to establish a successful infection. Hence, inhibiting this enzyme can be a possible therapeutic strategy against toxoplasmosis. This is the first report of the detailed structural investigations of the TgASP5 mature enzyme using molecular modeling and an all-atom simulation approach which provide in-depth knowledge of the active site architecture of TgASP5. The analysis of the binding mode of the TEXEL (Toxoplasma EXport Element) substrate to TgASP5 highlighted the importance of the active site residues. Ser505, Ala776 and Tyr689 in the S2 binding pocket are responsible for the specificity towards Arg at the P2 position of TEXEL substrate. The molecular basis of inhibition by the only known inhibitor RRLStatine has been identified, and our results show that it blocks the active site by forming a hydrogen bond with a catalytic aspartate. Besides that, known aspartic protease inhibitors were screened against TgASP5 using docking, MD simulations and MM-PBSA binding energy calculations. The top-ranked inhibitors (SC6, ZY1, QBH) showed higher binding energy than RRLStatine. Understanding the structural basis of substrate recognition and the binding mode of these inhibitors will help to develop potent mechanistic inhibitors against TgASP5. This study will also provide insights into the structural features of pepsin-like aspartic proteases from other apicomplexan parasites for developing antiparasitic agents.Communicated by Ramaswamy H. Sarma.

2.
Curr Res Struct Biol ; 7: 100128, 2024.
Article En | MEDLINE | ID: mdl-38304146

Plasmodium species are causative agents of malaria, a disease that is a serious global health concern. FDA-approved HIV-1 protease inhibitors (HIV-1 PIs) have been reported to be effective in reducing the infection by Plasmodium parasites in the population co-infected with both HIV-1 and malaria. However, the mechanism of HIV-1 PIs in mitigating Plasmodium pathogenesis during malaria/HIV-1 co-infection is not fully understood. In this study we demonstrate that HIV-1 drugs ritonavir (RTV) and lopinavir (LPV) exhibit the highest inhibition activity against plasmepsin II (PMII) and plasmepsin X (PMX) of P. falciparum. Crystal structures of the complexes of PMII with both drugs have been determined. The inhibitors interact with PMII via multiple hydrogen bonding and hydrophobic interactions. The P4 moiety of RTV forms additional interactions compared to LPV and exhibits conformational flexibility in a large S4 pocket of PMII. Our study is also the first to report inhibition of P. falciparum PMX by RTV and the mode of binding of the drug to the PMX active site. Analysis of the crystal structures implies that PMs can accommodate bulkier groups of these inhibitors in their S4 binding pockets. Structurally similar active sites of different vacuolar and non-vacuolar PMs suggest the potential of HIV-1 PIs in targeting these enzymes with differential affinities. Our structural investigations and biochemical data emphasize PMs as crucial targets for repurposing HIV-1 PIs as antimalarial drugs.

3.
Structure ; 30(9): 1307-1320.e5, 2022 09 01.
Article En | MEDLINE | ID: mdl-35738282

The mitochondrial serine protease High-temperature requirement A2 (HtrA2) is associated with various diseases including neurodegenerative disorders and cancer. Despite availability of structural details, the reports on HtrA2's mechanistic regulation that varies with the type of activation signals still remain non-concordant. To expound the role of regulatory PDZ (Postsynaptic density-95/Discs large/Zonula occludens-1) domains in multimodal activation of HtrA2, we generated heterotrimeric HtrA2 variants comprising different numbers of PDZs and/or active-site mutations. Sequential deletion of PDZs from the trimeric ensemble significantly affected its residual activity in a way that proffered a hypothesis advocating inter-molecular allosteric crosstalk via PDZs in HtrA2. Furthermore, structural and computational snapshots affirmed the role of PDZs in secondary structural element formation around the regulatory loops and coordinated reorganization of the N-terminal region. Therefore, apart from providing cues for devising structure-guided therapeutic strategies, this study establishes a physiologically relevant working model of complex allosteric regulation through a trans-mediated cooperatively shared energy landscape.


Mitochondrial Proteins , Serine Endopeptidases , Allosteric Regulation , High-Temperature Requirement A Serine Peptidase 2 , Mitochondrial Proteins/chemistry , Models, Molecular , PDZ Domains , Serine Endopeptidases/chemistry
4.
Protein Sci ; 31(4): 882-899, 2022 04.
Article En | MEDLINE | ID: mdl-35048450

Plasmodium falciparum plasmepsin X (PfPMX), involved in the invasion and egress of this deadliest malarial parasite, is essential for its survival and hence considered as an important drug target. We report the first crystal structure of PfPMX zymogen containing a novel fold of its prosegment. A unique twisted loop from the prosegment and arginine 244 from the mature enzyme is involved in zymogen inactivation; such mechanism, not previously reported, might be common for apicomplexan proteases similar to PfPMX. The maturation of PfPMX zymogen occurs through cleavage of its prosegment at multiple sites. Our data provide thorough insights into the mode of binding of a substrate and a potent inhibitor 49c to PfPMX. We present molecular details of inactivation, maturation, and inhibition of PfPMX that should aid in the development of potent inhibitors against pepsin-like aspartic proteases from apicomplexan parasites.


Aspartic Acid Endopeptidases , Enzyme Precursors , Plasmodium falciparum , Protozoan Proteins , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Enzyme Precursors/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry
5.
Proteins ; 90(3): 810-823, 2022 03.
Article En | MEDLINE | ID: mdl-34748226

Glutamate dehydrogenase (GDH) is a salient metabolic enzyme which catalyzes the NAD+ - or NADP+ -dependent reversible conversion of α-ketoglutarate (AKG) to l-glutamate; and thereby connects the carbon and nitrogen metabolism cycles in all living organisms. The function of GDH is extensively regulated by both metabolites (citrate, succinate, etc.) and non-metabolites (ATP, NADH, etc.) but sufficient molecular evidences are lacking to rationalize the inhibitory effects by the metabolites. We have expressed and purified NADP+ -dependent Aspergillus terreus GDH (AtGDH) in recombinant form. Succinate, malonate, maleate, fumarate, and tartrate independently inhibit the activity of AtGDH to different extents. The crystal structures of AtGDH complexed with the dicarboxylic acid metabolites and the coenzyme NADPH have been determined. Although AtGDH structures are not complexed with substrate; surprisingly, they acquire super closed conformation like previously reported for substrate and coenzyme bound catalytically competent Aspergillus niger GDH (AnGDH). These dicarboxylic acid metabolites partially occupy the same binding pocket as substrate; but interact with varying polar interactions and the coenzyme NADPH binds to the Domain-II of AtGDH. The low inhibition potential of tartrate as compared to other dicarboxylic acid metabolites is due to its weaker interactions of carboxylate groups with AtGDH. Our results suggest that the length of carbon skeleton and positioning of the carboxylate groups of inhibitors between two conserved lysine residues at the GDH active site might be the determinants of their inhibitory potency. Molecular details on the dicarboxylic acid metabolites bound AtGDH active site architecture presented here would be applicable to GDHs in general.


Aspergillus/enzymology , Dicarboxylic Acids/metabolism , Enzyme Inhibitors/chemistry , Glutamate Dehydrogenase/antagonists & inhibitors , Allosteric Regulation , Amino Acid Sequence , Aspergillus niger , Catalytic Domain , Coenzymes/metabolism , Glutamate Dehydrogenase (NADP+)/metabolism , Ketoglutaric Acids/metabolism , Kinetics , Metabolome , NADP/metabolism , Protein Binding
6.
Emerg Top Life Sci ; 5(1): 127-149, 2021 05 14.
Article En | MEDLINE | ID: mdl-33969867

Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.


Proteins , Synchrotrons , Crystallography , Lasers , Macromolecular Substances
7.
FEBS J ; 288(2): 678-698, 2021 01.
Article En | MEDLINE | ID: mdl-32385863

Plasmodium parasites that cause malaria produce plasmepsins (PMs), pepsin-like aspartic proteases that are important antimalarial drug targets due to their role in host hemoglobin degradation. The enzymes are synthesized as inactive zymogens (pro-PMs), and the mechanism of their conversion to the active, mature forms has not been clearly elucidated. Our structural investigations of vacuolar pro-PMs with truncated prosegment (pro-tPMs) reveal that the formation of the S-shaped dimer is their innate property. Further structural studies, biochemical analysis, and molecular dynamics simulations indicate that disruption of the Tyr-Asp loop (121p-4), coordinated with the movement of the loop L1 (237-247) and helix H2 (101p-113p), is responsible for the extension of the pro-mature region (harboring the cleavage site). Consequently, under acidic pH conditions, these structural changes result in the dissociation of the dimers to monomers and the protonation of the residues in the prosegment prompts its unfolding. Subsequently, we demonstrated that the active site of the monomeric pro-tPMs with the unfolded prosegment is accessible for peptide substrate binding; in contrast, the active site is blocked in folded prosegment form of pro-tPMs. Thus, we propose a novel mechanism of auto-activation of vacuolar pro-tPMs that under acidic conditions can form a catalytically competent active site. One monomer cleaves the prosegment of the other one through a trans-activation process, resulting in formation of mature enzyme. As a result, once a mature enzyme is generated, it leads to the complete conversion of all the inactive pro-tPMs to their mature form. DATABASE: Atomic coordinates and structure factors have been submitted in the Protein Data Bank (PDB) under the PDB IDs 6KUB, 6KUC, and 6KUD.


Aspartic Acid Endopeptidases/metabolism , Plasmodium falciparum/enzymology , Amino Acid Sequence , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Catalytic Domain , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Sequence Alignment
8.
PLoS Pathog ; 16(11): e1009016, 2020 11.
Article En | MEDLINE | ID: mdl-33216805

The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane ß-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.


Adaptation, Physiological , Inflammation/microbiology , Loss of Function Mutation , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology , Streptolysins/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/microbiology , Cholesterol/metabolism , Cytoplasm/microbiology , Female , Humans , Mice , Models, Structural , Perforin/genetics , Perforin/metabolism , Sequence Alignment , Streptococcus pneumoniae/genetics , Streptolysins/genetics
9.
Sci Rep ; 9(1): 1780, 2019 02 11.
Article En | MEDLINE | ID: mdl-30741951

Cancer remains one of the biggest threats to human society. There are massive demands for compounds to selectively kill cancerous cells. Earlier studies have shown that bovine α -lactalbumin made lethal to tumor cells (BAMLET) becomes cytotoxic against cancer cells in complex with oleic acid {Hoque, M. et. al., PLoSOne 8, e68390 (2013)}. In our study, we obtained bovine α-lactalbumin complexed with lanthanum ion (La3+-B-α-LA) and determined its high resolution crystal structure. The natural calcium binding site of bovine α-lactalbumin is replaced by lanthanum. The La3+ complex formation by B-α-apo-LA was also supported by various biophysical methods. Interestingly, our complex, La3+-B-α-LA exhibits much greater anticancer activity against breast cancer cells as compared to the reported BAMLET-oleic acid complex. This study shows that La3+-B-α-LA complex is preferentially more toxic to MCF-7 cells as compared to KB (oral cancer) and HeLa (cervical) cells, while almost non-toxic to the healthy cells that we studied. Our data indicates that the cytotoxicity of La3+-B-α-LA against cancer cells is through apoptotic path way. The higher anticancer activity of La3+-B-α-LA is attributable to the requisite structural changes induced in the protein by La3+ binding as supported by the crystal structure of the complex.


Apoproteins/pharmacology , Lactalbumin/pharmacology , Lanthanum/metabolism , Animals , Apoproteins/chemistry , Apoproteins/metabolism , Calcium/metabolism , Cattle , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Humans , Lactalbumin/chemistry , Lactalbumin/metabolism , Lanthanum/chemistry , Molecular Structure , Protein Binding
10.
J Struct Biol ; 204(3): 498-506, 2018 12.
Article En | MEDLINE | ID: mdl-30244006

Substrate-binding proteins (SBPs) are periplasmic proteins consisting of two α/ß domains joined by a hinge region with specificity towards cognate ligands. Based on three-dimensional fold, sugar-specific SBPs have been classified into cluster B and cluster D-I. The analysis of sequences and structures of sugar-binding pocket of cluster D-I SBPs revealed the presence of extra residues on two loops (L1, L2) and a helix (H1) in few members of this family, that binds specifically to monosaccharides. Presence of conserved histidine in L2 and tryptophan in H1 can be considered as the identity marks for the cluster D-I monosaccharide-binding SBPs. A glucose binding protein (ppGBP) from Pseudomonas putida CSV86 was found to contain a structural fold similar to oligosaccharide-binding cluster D-I SBPs, but functionally binds to only glucose due to constriction of its binding pocket mainly by L2 (375-382). ppGBP with partial deletion of L2 (ppGBPΔL2) was created, crystallized and biochemical characterization was performed. Compared to wild type ppGBP, the ppGBPΔL2 structure showed widening of the glucose-binding pocket with ∼80% lower glucose binding. Our results show that the substrate specificity of SBPs can be altered by modulating the size of the binding pocket. Based on this, we propose a sub classification of cluster D-I SBPs into (i) cluster D-I(a)-monosaccharide-binding SBPs and (ii) cluster D-I(b)-oligosaccharide-binding SBPs. This study also provides the direct structural and functional correlation indicating that divergence of proteins may occur through insertions or deletions of sequences in the already existing SBPs leading to evolution at the functional level.


Bacterial Proteins/metabolism , Glucose/metabolism , Monosaccharides/metabolism , Periplasmic Binding Proteins/metabolism , Receptors, Cell Surface/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Binding Sites/genetics , Crystallography, X-Ray , Evolution, Molecular , Glucose/chemistry , Ligands , Models, Molecular , Monosaccharides/chemistry , Mutation , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , Phylogeny , Protein Conformation , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics
11.
FEBS J ; 285(16): 3077-3096, 2018 08.
Article En | MEDLINE | ID: mdl-29943906

Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar Ki values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different ρ-substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DATABASE: Structural data are available in the PDB under the accession numbers 5YIE, 5YIB, 5YID, 5YIC, and 5YIA.


Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Ethylenediamines/chemistry , Isoquinolines/chemistry , Peptidomimetics/pharmacology , Thiazoles/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/genetics , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Ethylenediamines/pharmacology , Hemoglobins/metabolism , Humans , Isoquinolines/pharmacology , Molecular Targeted Therapy/methods , Peptidomimetics/chemistry , Plasmodium falciparum/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Thiazoles/pharmacology
12.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 4): 198-204, 2018 04 01.
Article En | MEDLINE | ID: mdl-29633967

Genome packaging is a critical step in the assembly of dsDNA bacteriophages and is carried out by a powerful molecular motor known as the large terminase. To date, wild-type structures of only two large terminase proteins are available, and more structural information is needed to understand the genome-packaging mechanism. Towards this goal, the large and small terminase proteins from bacteriophage N4, which infects the Escherichia coli K12 strain, have been cloned, expressed and purified. The purified putative large terminase protein hydrolyzes ATP, and this is enhanced in the presence of the small terminase. The large terminase protein was crystallized using the sitting-drop vapour-diffusion method and the crystal diffracted to 2.8 Šresolution using a home X-ray source. Analysis of the X-ray diffraction data showed that the crystal belonged to space group P212121, with unit-cell parameters a = 53.7, b = 93.6, c = 124.9 Å, α = ß = γ = 90°. The crystal had a solvent content of 50.2% and contained one molecule in the asymmetric unit.


Bacteriophage N4/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Endodeoxyribonucleases/isolation & purification , Models, Molecular , Protein Conformation , Sequence Homology , Viral Proteins/isolation & purification
13.
J Biol Chem ; 293(17): 6241-6258, 2018 04 27.
Article En | MEDLINE | ID: mdl-29540480

Glutamate dehydrogenase (GDH) is a key enzyme connecting carbon and nitrogen metabolism in all living organisms. Despite extensive studies on GDHs from both prokaryotic and eukaryotic organisms in the last 40 years, the structural basis of the catalytic features of this enzyme remains incomplete. This study reports the structural basis of the GDH catalytic mechanism and allosteric behavior. We determined the first high-resolution crystal structures of glutamate dehydrogenase from the fungus Aspergillus niger (AnGDH), a unique NADP+-dependent allosteric enzyme that is forward-inhibited by the formation of mixed disulfide. We determined the structures of the active enzyme in its apo form and in binary/ternary complexes with bound substrate (α-ketoglutarate), inhibitor (isophthalate), coenzyme (NADPH), or two reaction intermediates (α-iminoglutarate and 2-amino-2-hydroxyglutarate). The structure of the forward-inhibited enzyme (fiAnGDH) was also determined. The hexameric AnGDH had three open subunits at one side and three partially closed protomers at the other, a configuration not previously reported. The AnGDH hexamers having subunits with different conformations indicated that its α-ketoglutarate-dependent homotropic cooperativity follows the Monod-Wyman-Changeux (MWC) model. Moreover, the position of the water attached to Asp-154 and Gly-153 defined the previously unresolved ammonium ion-binding pocket, and the binding site for the 2'-phosphate group of the coenzyme was also better defined by our structural data. Additional structural and mutagenesis experiments identified the residues essential for coenzyme recognition. This study reveals the structural features responsible for positioning α-ketoglutarate, NADPH, ammonium ion, and the reaction intermediates in the GDH active site.


Ammonia/chemistry , Aspergillus niger/enzymology , Fungal Proteins/chemistry , Glutamate Dehydrogenase/chemistry , Glutamates/chemistry , NADP/chemistry , Allosteric Regulation , Aspergillus niger/genetics , Catalytic Domain , Crystallography, X-Ray , Structure-Activity Relationship
14.
J Alzheimers Dis ; 60(3): 999-1014, 2017.
Article En | MEDLINE | ID: mdl-28984591

The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 µM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the ß-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.


Curcumin/pharmacology , Neuroprotective Agents/pharmacology , Protein Aggregation, Pathological/drug therapy , tau Proteins/metabolism , Circular Dichroism , Dynamic Light Scattering , Escherichia coli , Humans , Kinetics , Microscopy, Atomic Force , Microscopy, Electron , Molecular Docking Simulation , Protein Aggregation, Pathological/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Sequence Homology, Amino Acid , tau Proteins/genetics , tau Proteins/ultrastructure
15.
Sci Rep ; 6: 31420, 2016 08 17.
Article En | MEDLINE | ID: mdl-27531685

Plasmodium falciparum plasmepsin V (PfPMV) is an essential aspartic protease required for parasite survival, thus, considered as a potential drug target. This study reports the first detailed structural analysis and molecular dynamics simulation of PfPMV as an apoenzyme and its complexes with the substrate PEXEL as well as with the inhibitor saquinavir. The presence of pro-peptide in PfPMV may not structurally hinder the formation of a functionally competent catalytic active site. The structure of PfPMV-PEXEL complex shows that the unique positions of Glu179 and Gln222 are responsible for providing the specificity of PEXEL substrate with arginine at P3 position. The structural analysis also reveals that the S4 binding pocket in PfPMV is occupied by Ile94, Ala98, Phe370 and Tyr472, and therefore, does not allow binding of pepstatin, a potent inhibitor of most pepsin-like aspartic proteases. Among the screened inhibitors, the HIV-1 protease inhibitors and KNI compounds have higher binding affinities for PfPMV with saquinavir having the highest value. The presence of a flexible group at P2 and a bulky hydrophobic group at P3 position of the inhibitor is preferred in the PfPMV substrate binding pocket. Results from the present study will aid in the design of potent inhibitors of PMV.


Aspartic Acid Proteases/chemistry , Models, Molecular , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Antimalarials/chemistry , Aspartic Acid Proteases/antagonists & inhibitors , Catalytic Domain , Drug Design , Humans , Protease Inhibitors/chemistry , Protein Structure, Quaternary , Protozoan Proteins/antagonists & inhibitors
16.
Biochim Biophys Acta ; 1864(10): 1356-62, 2016 10.
Article En | MEDLINE | ID: mdl-27378574

Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding.


Aspartic Acid Endopeptidases/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Catalysis , Enzyme Precursors/metabolism , Kinetics , Pepsin A/metabolism , Pepsinogens/metabolism , Protein Domains , Protein Folding
17.
J Biol Chem ; 291(15): 7844-57, 2016 Apr 08.
Article En | MEDLINE | ID: mdl-26861882

Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 µmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Glucose/metabolism , Pseudomonas putida/chemistry , Pseudomonas putida/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Galactose/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Protein Folding , Pseudomonas Infections/microbiology , Sequence Alignment , Substrate Specificity
18.
Mol Biochem Parasitol ; 197(1-2): 56-63, 2014 Oct.
Article En | MEDLINE | ID: mdl-25447707

Plasmepsin V, a membrane-bound aspartic protease present in Plasmodium falciparum, is involved in the export of malaria parasite effector proteins into host erythrocytes and therefore is a potential target for antimalarial drug development. The present study reports the bacterial recombinant expression and initial characterization of zymogenic and mature plasmepsin V. A 484-residue truncated form of proplasmepsin (Glu37-Asn521) was fused to a fragment of thioredoxin and expressed as inclusion bodies. Refolding conditions were optimized and zymogen was processed into a mature form via cleavage at the Asn80-Ala81 peptide bond. Mature plasmepsin V exhibited a pH optimum of 5.5-7.0 with Km and kcat of 4.6 µM and 0.24s(-1), respectively, at pH 6.0 using the substrate DABCYL-LNKRLLHETQ-E(EDANS). Furthermore, the prosegment of proplasmepsin V was shown to be nonessential for refolding and inhibition. Unexpectedly, unprocessed proplasmepsin V was enzymatically active with slightly reduced substrate affinity (∼ 2-fold), and similar pH optimum as well as turnover compared to the mature form. Both zymogenic and mature plasmepsin V were partially inhibited by pepstatin A as well as several KNI aspartic protease inhibitors while certain metals strongly inhibited activity. Overall, the present study provides the first report on the nonessentiality of the prosegment for plasmepsin V folding and activity, and therefore, subsequent characterization of its structure-function relationships of both zymogen and mature forms in the development of novel inhibitors with potential antimalarial activities is warranted.


Aspartic Acid Endopeptidases/metabolism , Enzyme Precursors/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/genetics , Enzyme Activation , Enzyme Inhibitors/pharmacology , Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/genetics , Plasmodium falciparum/genetics , Protein Refolding , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
19.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1508-12, 2014 Nov.
Article En | MEDLINE | ID: mdl-25372818

Glutamate dehydrogenase (GDH) catalyzes the NAD-dependent or NADP-dependent oxidative deamination of L-glutamate to 2-oxoglutarate and ammonia. This important reversible reaction establishes the link between carbon and nitrogen metabolism. In this study, Aspergillus niger NADP-GDH (AnGDH) has been overexpressed and purified. Purified AnGDH, with a high specific activity of 631.1 units per milligram of protein, was crystallized and the crystal diffracted to 2.9 Šresolution using a home X-ray source. Preliminary analysis of the X-ray diffraction data showed that the crystal belonged to space group R32, with unit-cell parameters a=b=173.8, c=241.5 Å, α=ß=90, γ=120°. The crystals exhibited an unusually high solvent content (83.0%) and had only one molecule in the asymmetric unit. Initial phases were obtained by molecular replacement, and model building and structure refinement of AnGDH are in progress.


Aspergillus niger/enzymology , Glutamate Dehydrogenase (NADP+)/chemistry , Glutamate Dehydrogenase (NADP+)/isolation & purification , Crystallization , X-Ray Diffraction
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1914-21, 2014 Jul.
Article En | MEDLINE | ID: mdl-25004968

Members of the C/EBP family of transcription factors bind to the Taz2 domain of p300/CBP and mediate its phosphorylation through the recruitment of specific kinases. Short sequence motifs termed homology boxes A and B, which comprise their minimal transactivation domains (TADs), are conserved between C/EBP activators and are necessary for specific p300/CBP binding. A possible mode of interaction between C/EBP TADs and the p300 Taz2 domain was implied by the crystal structure of a chimeric protein composed of residues 1723-1818 of p300 Taz2 and residues 37-61 of C/EBPℇ. The segment corresponding to the C/EBPℇ TAD forms two orthogonally disposed helices connected by a short linker and interacts with the core structure of Taz2 from a symmetry-related molecule. It is proposed that other members of the C/EBP family interact with the Taz2 domain in the same manner. The position of the C/EBPℇ peptide on the Taz2 protein interaction surface suggests that the N-termini of C/EBP proteins are unbound in the C/EBP-p300 Taz2 complex. This observation is in agreement with the known location of the docking site of protein kinase HIPK2 in the C/EBPß N-terminus, which associates with the C/EBPß-p300 complex.


CCAAT-Enhancer-Binding Proteins/metabolism , p300-CBP Transcription Factors/chemistry , Amino Acid Sequence , CCAAT-Enhancer-Binding Proteins/chemistry , Crystallography, X-Ray , Molecular Sequence Data , Phosphorylation , Protein Conformation , Sequence Homology, Amino Acid
...