Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(21): 15681-15692, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38766760

RESUMEN

This study employs femtosecond transient absorption spectroscopy to investigate the rapid dynamics of excited state carriers in three metalated porphyrin-naphthalimide (PN) molecules and one free-base molecule. The dynamics of electron injection, from PN to mesoporous titania (TiO2), in PN adsorbed TiO2 films (Ti-PN), were carefully investigated and compared to PN adsorbed ZrO2 films (Zr-PN). In addition, we examined the self-assembled PN films and found that, in their self-assembled state, these molecules exhibited a longer relaxation time than Zr-PN monomeric films, where the charge injection channel was insignificant. The ground-state bleach band in the Ti-PN films gradually shifted to longer wavelengths, indicating the occurrence of the Stark effect. Faster electron injection was observed for the metalated PN systems and the electron injection times from the various excited states to the conduction band of TiO2 (CB-TiO2) were obtained from the target model analysis of the transient absorption spectra data matrix. In these metal-organic complexes, hot electron injection from PN to CB-TiO2 occurred on a time scale of <360 fs. Importantly, Cu(II)-based PN complexes exhibited faster injection and longer recombination times. The injection times have been estimated to result from a locally excited state at ≈280 fs, a hot singlet excited state at 4.95 ps, and a vibrationally relaxed singlet excited state at 97.88 ps. The critical photophysical and charge injection processes seen here provide the potential for exploring the underlying factors involved and how they correlate with photocatalytic performance.

2.
Nanoscale ; 16(19): 9392-9399, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38683187

RESUMEN

The narcissistic self-sorted phenomenon is explicitly attributed to the structural similarities in organic molecules. Although such relevant materials are rarely explored, self-sorted structures from macrocyclic π-conjugated-based p- and n-type organic semiconductors facilitate the increase of exciton dissociation and charge separation in bulk heterojunction solar cells. Herein, we report two extended π-conjugated derivatives consisting of zinc-porphyrin-linked benzothiadiazole acting as an acceptor (PB) and anthracene as a donor (PA). Despite having the same porphyrin π-conjugated core in PA and PB, variations in donor and acceptor moieties make the molecular packing form one-dimensional (1D) self-assembled nanofibers via H- and J-type aggregates. Interestingly, a dissimilar aggregate of PA and PB exists as a mixture (PA + PB), promoting narcissistic self-sorted structures. Electrochemical impedance investigation reveals that the electronic characteristics of self-sorting assemblies are influenced by the difference in electrostatic potentials for PA and PB, resulting in a transitional electrical conductivity of 0.14 S cm-1. Therefore, the design of such materials for the fabrication of effective photovoltaics is promoted by these extraordinary self-sorted behaviors in comparable organic π-conjugated molecules.

3.
Phys Chem Chem Phys ; 25(36): 24539-24546, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37661730

RESUMEN

Control over the dimensionality of stimulated organic semiconductors has aroused significant interest in organic electronics; however, the design of such materials still remains to be decided. Herein, we have developed three dibenzothiophene-appended freebase, zinc-metalated and copper-metalated porphyrin derivatives (PFb-DBT, PZn-DBT and PCu-DBT) in which PCu-DBT leads to an anion-binding complex in chloroform upon the application of light, resulting in self-assembled 1D nanostructures with high electrical conductivity. Nevertheless, light-stimulated freebase and zinc-metalated P-DBT undergo protonation and demetalation. Electron microscopic images displayed the anion-binding-assisted 1D nanostructure using weak non-covalent interactions, which promotes enhancement in electrical conductivity among other things, as confirmed by electrochemical impedance spectra. Thus, the generation of well-defined nanostructures with improved electronic characteristics from stimuli-responsive organic dyes suggests the importance of developing various smart materials for efficient field effect transistors and sensors.

4.
Nanoscale ; 14(1): 140-146, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34904615

RESUMEN

The splitting of water into hydrogen and oxygen under visible light is an emerging phenomenon in green energy technology. Nevertheless, selecting an appropriate photocatalyst is rather significant to enhance hydrogen production on a large scale. In this context, organic photocatalysts have received considerable attention owing to their larger surface area, control in diffusion adsorption, nanostructures and electronic properties. Herein, we have developed five either free base or transition metalated porphyrin-napthalimide based donor-acceptor systems (PN1-PN5) and studied their morphology, electronic properties and catalytic behaviour. Detailed studies suggest that the Co(II) substituent D-A system (PN2) displayed a well-aligned one-dimensional (1D) nanowire with high electrical conductivity promoting remarkable photocatalytic hydrogen production rate (18 mM g-1 h-1) when compared to that of porphyrin-based derivatives reported until now. Thus, these results propose to investigate diverse metalated π-conjugated materials as photocatalysts for hydrogen production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...