Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107436, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838775

RESUMEN

Hearing crucially depends on cochlear ion homeostasis as evident from deafness elicited by mutations in various genes encoding cation or anion channels and transporters. Ablation of ClC­K/barttin chloride channels causes deafness by interfering with the positive electrical potential of the endolymph, but roles of other anion channels in the inner ear have not been studied. Here we report the intracochlear distribution of all five LRRC8 subunits of VRAC, a volume-regulated anion channel that transports chloride, metabolites, and drugs such as the ototoxic anti-cancer drug cisplatin, and explore its physiological role by ablating its subunits. Sensory hair cells express all LRRC8 isoforms, whereas only LRRC8A, D and E were found in the potassium-secreting epithelium of the stria vascularis. Cochlear disruption of the essential LRRC8A subunit, or combined ablation of LRRC8D and E, resulted in cochlear degeneration and congenital deafness of Lrrc8a-/- mice. It was associated with a progressive degeneration of the organ of Corti and its innervating spiral ganglion. Like disruption of ClC-K/barttin, loss of VRAC severely reduced the endocochlear potential. However, the mechanism underlying this reduction seems different. Disruption of VRAC, but not ClC-K/barttin, led to an almost complete loss of Kir4.1 (KCNJ10), a strial K+ channel crucial for the generation of the endocochlear potential. The strong downregulation of Kir4.1 might be secondary to a loss of VRAC-mediated transport of metabolites regulating inner ear redox potential such as glutathione. Our study extends the knowledge of the role of cochlear ion transport in hearing and ototoxicity.

2.
Biores Open Access ; 9(1): 162-173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642331

RESUMEN

Dental pulp stem cells (DPSCs) have great potential for use in tissue engineering (TE)-based dental treatments. Electrical stimulation (EStim) has been shown to influence cellular functions that could play an important role in the success of TE treatments. Despite many recent studies focused on DPSCs, few have investigated the effect EStim has on these cells. The aim of this research was to investigate the effects of direct current (DC) EStim on osteo-/odontogenic differentiation of DPSCs. To do so cells were isolated from male Sprague Dawley rats (7-8 weeks old), and phenotype characterization and multilineage differentiation analysis were conducted to verify their "stemness." Different voltages of DC EStim were administrated 1 h/day for 7 days, and the effect of EStim on DPSC osteo-/odontogenic differentiation was assessed by measuring calcium and collagen deposition, alkaline phosphatase (ALP) activity, and expression of osteo- and odontogenic marker genes at days 7 and 14 of culture. We found that while 10 and 50 mV/mm of EStim had no effect on cell number or metabolic activity, 100 mV/mm caused a significant reduction in cell number, and 150 mV/mm resulted in cell death. Despite increased gene expression of osteo-/odontogenic gene markers, Osteocalcin, RunX2, BSP, and DMP1, at day 7 in EStim treated cells, 50 mV/mm of EStim decreased collagen deposition and ALP activity at both time points, and calcium deposition was found to be lower at day 14. In conclusion, under the conditions tested, EStim appears to impair DPSC osteo-/odontogenic differentiation. Additional studies are needed to further characterize and understand the mechanisms involved in DPSC response to EStim, with an eye toward its potential use in TE-based dental treatments.

3.
Ultrasound Med Biol ; 46(3): 855-860, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31806498

RESUMEN

The most common imaging method used to diagnose and monitor bone fractures and healing is multiple radiographic images performed by highly trained professionals with expensive equipment that can expose patients to high levels of ionizing radiation. Here we introduce and illustrate proof-of-concept of a potential alternative method for measuring bone fractures: ultrasound pitch-catch measurement technique. Measurements are performed with two piezoelectric transducers, housed in standard orthopedic screws and fixed on either side of simulated fractures, with and without an orthopedic plate, in ex vivo pig limb bones. Using this measurement method, we were able to detect significant differences between uncut and 2-, 5- and 10-mm-deep bone cuts using a two-sided t-test with an α level of 5%.


Asunto(s)
Fracturas Óseas/diagnóstico por imagen , Animales , Porcinos , Ultrasonografía/métodos
4.
J Vis Exp ; (143)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30774122

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have been used extensively to promote bone healing in tissue engineering approaches. Electrical stimulation (EStim) has been demonstrated to increase MSC osteogenic differentiation in vitro and promote bone healing in clinical settings. Here we describe the construction of an EStim cell culture chamber and its use in treating rat bone-marrow-derived MSC to enhance osteogenic differentiation. We found that treating MSCs with EStim for 7 days results in a significant increase in the osteogenic differentiation, and importantly, this pro-osteogenic effect persists long after (7 days) EStim is discontinued. This approach of pretreating MSCs with EStim to enhance osteogenic differentiation could be used to optimize bone tissue engineering treatment outcomes and, thus, help them to achieve their full therapeutic potential. In addition to this application, this EStim cell culture chamber and protocol can also be used to investigate other EStim-sensitive cell behaviors, such as migration, proliferation, apoptosis, and scaffold attachment.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Animales , Calcio/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Forma de la Célula , Células Cultivadas , Estimulación Eléctrica , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Ratas
5.
PLoS One ; 13(7): e0200548, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30011306

RESUMEN

This study was designed to characterize morphologic stages during neuroma development post amputation with an eye toward developing better treatment strategies that intervene before neuromas are fully formed. Right forelimbs of 30 Sprague Dawley rats were amputated and limb stumps were collected at 3, 7, 28, 60 and 90 Days Post Amputation (DPA). Morphology of newly formed nerves and neuromas were assessed via general histology and neurofilament protein antibody staining. Analysis revealed six morphological characteristics during nerve and neuroma development; 1) normal nerve, 2) degenerating axons, 3) axonal sprouts, 4) unorganized bundles of axons, 5) unorganized axon growth into muscles, and 6) unorganized axon growth into fibrotic tissue (neuroma). At early stages (3 & 7 DPA) after amputation, normal nerves could be identified throughout the limb stump and small areas of axonal sprouts were present near the site of injury. Signs of degenerating axons were evident from 7 to 90 DPA. From day 28 on, variability of nerve characteristics with signs of unorganized axon growth into muscle and fibrotic tissue and neuroma formation became visible in multiple areas of stump tissue. These pathological features became more evident on days 60 and 90. At 90 DPA frank neuroma formation was present in all stump tissue. By following nerve regrowth and neuroma formation after amputation we were able to identify 6 separate histological stages of nerve regrowth and neuroma development. Axonal regrowth was observed as early as 3 DPA and signs of unorganized axonal growth and neuroma formation were evident by 28 DPA. Based on these observations we speculate that neuroma treatment and or prevention strategies might be more successful if targeted at the initial stages of development and not after 28 DPA.


Asunto(s)
Axones/patología , Neoplasias Experimentales , Neuroma , Heridas y Lesiones , Muñones de Amputación/patología , Muñones de Amputación/fisiopatología , Animales , Miembro Posterior , Masculino , Neoplasias Experimentales/patología , Neoplasias Experimentales/fisiopatología , Neuroma/patología , Neuroma/fisiopatología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Heridas y Lesiones/complicaciones , Heridas y Lesiones/patología , Heridas y Lesiones/fisiopatología
6.
PeerJ ; 6: e4959, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910982

RESUMEN

BACKGROUND: Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. METHODS: Rat bone marrow-derived MSC were exposed to 100 mV/mm, 1 hr/day for three, seven, and 14 days, then osteogenic differentiation was assessed at Day 14 of culture by measuring collagen production, calcium deposition, alkaline phosphatase activity and osteogenic marker gene expression. RESULTS: We found that exposing MSC to ES for three days had minimal effect, while seven and 14 days resulted in increased osteogenic differentiation, as indicated by significant increases in collagen and calcium deposits, and expression of osteogenic marker genes Col1a1, Osteopontin, Osterix and Calmodulin. We also found that cells treated with ES for seven days, maintained this pro-osteogenic activity long (for at least seven days) after discontinuing ES exposure. DISCUSSION: This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.

7.
Sci Rep ; 8(1): 6307, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679025

RESUMEN

Bone Tissue engineering (BTE) has recently been introduced as an alternative to conventional treatments for large non-healing bone defects. BTE approaches mimic autologous bone grafts, by combining cells, scaffold, and growth factors, and have the added benefit of being able to manipulate these constituents to optimize healing. Electrical stimulation (ES) has long been used to successfully treat non-healing fractures and has recently been shown to stimulate bone cells to migrate, proliferate, align, differentiate, and adhere to bio compatible scaffolds, all cell behaviors that could improve BTE treatment outcomes. With the above in mind we performed in vitro experiments and demonstrated that exposing Mesenchymal Stem Cells (MSC) + scaffold to ES for 3 weeks resulted in significant increases in osteogenic differentiation. Then in in vivo experiments, for the first time, we demonstrated that exposing BTE treated rat femur large defects to ES for 8 weeks, caused improved healing, as indicated by increased bone formation, strength, vessel density, and osteogenic gene expression. Our results demonstrate that ES significantly increases osteogenic differentiation in vitro and that this effect is translated into improved healing in vivo. These findings support the use of ES to help BTE treatments achieve their full therapeutic potential.


Asunto(s)
Regeneración Ósea/fisiología , Huesos/metabolismo , Estimulación Eléctrica/métodos , Animales , Células de la Médula Ósea/citología , Huesos/fisiología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Fémur/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos , Andamios del Tejido , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...