Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Comput Biol Med ; 177: 108683, 2024 Jul.
Article En | MEDLINE | ID: mdl-38838555

G-Quadruplex DNA (GQ-DNA) is one of the most important non-canonical nucleic acid structures. GQ-DNA forming sequences are present in different crucial genomic regions and are abundant in promoter regions of several oncogenes. Therefore, GQ-DNA is an important target for anticancer drugs and hence binding interactions between GQ-DNA and small molecule ligands are of great importance. Since GQ-DNA is a highly polymorphic structure, it is important to identify ligand molecules which preferentially target a particular quadruplex sequence. In this present study, we have used a FDA approved drug called imatinib mesylate (ligand) which is a selective tyrosine kinase inhibitor, successfully used for the treatment of chronic myelogenous leukaemia, gastrointestinal stromal tumours. Different spectroscopic techniques as well as molecular docking investigations and molecular simulations have been used to explore the interaction between imatinib mesylate with VEGF GQ DNA structures along with duplex DNA, C-Myc, H-Telo GQ DNA. We found that imatinib mesylate shows preferential interaction towards VEGF GQ DNA compared to C-Myc, H-Telo GQ and duplex DNA. Imatinib mesylate seems to be an efficient ligand for VEGF GQ DNA, suggesting that it might be used to regulate the expression of genes in cancerous cells.


Antineoplastic Agents , G-Quadruplexes , Imatinib Mesylate , Molecular Docking Simulation , Vascular Endothelial Growth Factor A , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/chemistry , Imatinib Mesylate/pharmacology , G-Quadruplexes/drug effects , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , DNA/chemistry , DNA/metabolism
2.
ACS Omega ; 9(19): 21668-21679, 2024 May 14.
Article En | MEDLINE | ID: mdl-38764694

Harmaline and harmine are two structurally similar ß-carboline alkaloids with several therapeutic activities, such as anti-inflammatory, antioxidant, neuroprotective, nephroprotective, antidiabetic, and antitumor activities. It has been previously reported that the interaction between harmaline and hemoglobin (Hb) is weak in buffer media compared to harmine. Crowding agents induce a molecular crowding environment in the ex vivo condition, which is almost similar to the intracellular environment. In this present study, we have investigated the nature of the interactions of harmaline and harmine with Hb by increasing the percentage of the crowding agent in buffer solution. The results of the UV-vis and fluorescence spectroscopy analysis have showed that with an increasing proportion of crowding agents, the interaction between harmaline and Hb is steadily improving in comparison to harmine. It has been found that the binding constant of Hb-harmaline reaches 6.82 × 105 M-1 in the 40% polyethylene glycol 200-mediated crowding condition, indicating high affinity compared to very low interaction in buffer media. Steady-state fluorescence anisotropy along with fluorescence lifetime measurements further revealed that the rotational movement of harmaline is maximally restricted by Hb in high crowding environments. Stoichiometry results represent that Hb and harmaline interacts in a 1:1 ratio in different percentages of the crowding agent. The circular dichroism spectroscopic results predict stronger interaction of harmaline with Hb (secondary structure alterations) in a higher crowding environment. From the melting study, it was found that the reactions between Hb and harmaline in crowding environments are endothermic (ΔH > 0) and disordering (ΔS > 0) in nature, indicating that hydrogen bonding and van der Waals interactions are the main interacting forces between Hb and harmaline. Harmaline molecules are more reactive in molecular crowding conditions than in normal buffer condition. This study represents that the interaction between harmaline and Hb is stronger compared to the structurally similar harmine in a molecular crowding environment, which may enlighten the drug discovery process in cell-mimicking conditions.

3.
Langmuir ; 40(19): 10157-10170, 2024 May 14.
Article En | MEDLINE | ID: mdl-38700902

I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.


DNA , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras) , Quercetin , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/metabolism , DNA/chemistry , DNA/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Thermodynamics , Humans , Nucleotide Motifs , Binding Sites
4.
J Phys Chem Lett ; 14(46): 10328-10332, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37944083

In this investigation, different multispectroscopic analytical techniques have been used to explore the interaction between polyethylene microplastics (PE-MPs) and human hemoglobin (HHb), an oxygen carrier in the human blood circulatory system. Ultraviolet-visible absorption studies have demonstrated that HHb molecules may interact with PE-MPs, and thermal melting studies have indicated that PE-MPs have a stabilizing effect on HHb. Further circular dichroism and Fourier transform infrared spectroscopic studies have revealed the distinct changes in HHb's secondary structures caused by the formation of the HHb-PE-MP binding complex. These findings imply that PE-MPs could enter the blood circulation system of humans and may be hazardous to humans. This work explains the potential binding interaction of microplastics at the molecular level and offers insight into the intermolecular interaction between PE-MPs and HHb.


Microplastics , Polyethylene , Humans , Plastics , Circular Dichroism , Hemoglobins/chemistry
5.
Sci Rep ; 13(1): 18553, 2023 10 29.
Article En | MEDLINE | ID: mdl-37899486

Drought and extreme temperatures significantly limit chickpea productivity worldwide. The regulation of plant programmed cell death pathways is emerging as a key component of plant stress responses to maintain homeostasis at the cellular-level and a potential target for crop improvement against environmental stresses. Arabidopsis thaliana Bcl-2 associated athanogene 4 (AtBAG4) is a cytoprotective co-chaperone that is linked to plant responses to environmental stress. Here, we investigate whether exogenous expression of AtBAG4 impacts nodulation and nitrogen fixation. Transgenic chickpea lines expressing AtBAG4 are more drought tolerant and produce higher yields under drought stress. Furthermore, AtBAG4 expression supports higher nodulation, photosynthetic levels, nitrogen fixation and seed nitrogen content under well-watered conditions when the plants were inoculated with Mesorhizobium ciceri. Together, our findings illustrate the potential use of cytoprotective chaperones to improve crop performance at least in the greenhouse in future uncertain climates with little to no risk to yield under well-watered and water-deficient conditions.


Cicer , Cicer/genetics , Molecular Chaperones/genetics , Nitrogen Fixation , Stress, Physiological , Seeds/genetics
6.
ACS Omega ; 8(40): 37054-37064, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37841109

Harmine and harmaline are two structurally similar heterocyclic ß-carboline plant alkaloids with various therapeutic properties, having a slight structural difference in the C3=C4 double bond. In the present study, we have reported the nature of the interaction between hemoglobin (Hb) with harmine and harmaline by employing several multispectroscopic, calorimetric, and molecular docking approaches. Fluorescence spectroscopic studies have shown stronger interaction of harmine with Hb compared to that of almost structurally similar harmaline. Steady-state anisotropy experiments further show that the motional restriction of harmine in the presence of Hb is substantially higher than that of the harmaline-Hb complex. Circular dichroism (CD) study demonstrates no conformational change of Hb in the presence of both alkaloids, but CD study in 1-cm cuvette path length also demonstrates stronger affinity of harmine toward Hb compared to harmaline. From the thermal melting study, it has been found that both harmine and harmaline slightly affect the stability of Hb. From isothermal titration calorimetry (ITC), we have found that the binding process is exothermic and enthalpy driven. Molecular docking studies indicated that both harmine and harmaline prefer identical binding sites in Hb. This study helps us to understand that slight structural differences in harmine and harmaline can alter the interaction properties significantly, and this key information may help in the drug discovery processes.

7.
Sci Rep ; 13(1): 14338, 2023 09 01.
Article En | MEDLINE | ID: mdl-37658102

Ligands that recognise specific i-motif DNAs are helpful in cancer diagnostics and therapeutics, as i-motif formation can cause cancer. Although the loop regions of i-motifs are promising targets for ligands, the interaction between a ligand and the loop regions based on sequence information remains unexplored. Herein, we investigated the loop regions of various i-motif DNAs to determine whether these regions specifically interact with fluorescent ligands. Crystal violet (CV), a triphenylmethane dye, exhibited strong fluorescence with the i-motif derived from the promoter region of the human BCL2 gene in a sequence- and structure-specific manner. Our systematic sequence analysis indicated that CV was bound to the site formed by the first and third loops through inter-loop interactions between the guanine bases present in these loops. As the structural stability of the BCL2 i-motif was unaffected by CV, the local stabilisation of the loops by CV could inhibit the interaction of transcription factors with these loops, repressing the BCL2 expression of MCF-7 cells. Our finding suggests that the loops of the i-motif can act as a novel platform for the specific binding of small molecules; thus, they could be utilised for the theranostics of diseases associated with i-motif DNAs.


Gentian Violet , Precision Medicine , Humans , Ligands , Coloring Agents , DNA , Proto-Oncogene Proteins c-bcl-2
8.
ACS Omega ; 8(33): 30315-30329, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37636929

Research on the interactions of naturally existing flavonoids with various noncanonical DNA such as i-motif (IM) DNA structures is helpful in comprehending the molecular basis of binding mode as well as providing future direction for the application and invention of novel effective therapeutic drugs. IM DNA structures have been identified as prospective anticancer therapeutic targets, and flavonoids are smaller molecules with a variety of health-promoting attributes, including anticancer activities. The extensive investigation comprising a series of techniques reveals the contrasting mode of the binding behavior of fisetin and morin with various IM DNA structures. We have discovered that structural alterations of hydroxyl groups located at different places of aromatic rings influence flavonoid's reactivity. This minor structural alteration appears to be critical for fisetin and morin's capacity to interact differentially with HRAS1 and HRAS2 IM DNA. Hence, fisetin appears to be an efficient ligand for HRAS1 and morin is considered to be an efficient ligand for HRAS2 IM DNA. This novel exploration opens up the possibility of employing the strategy for regulation of gene expression in cancerous cells. Our finding also reveals the flavonoid-mediated specific interaction with IM DNA while pointing toward tangible strategies for drug discovery and other essential cellular functions.

9.
Polymers (Basel) ; 15(8)2023 Apr 12.
Article En | MEDLINE | ID: mdl-37111997

Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson-Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. This paper summarizes the synthesis of DNA origami and the drug encapsulation ability of functionalized DNA origami nanostructures. Finally, the remaining obstacles and prospects for DNA origami nanostructures in biomedical sciences are also highlighted.

10.
Heliyon ; 9(3): e13959, 2023 Mar.
Article En | MEDLINE | ID: mdl-36879969

G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.

11.
Anal Chem ; 94(20): 7400-7407, 2022 05 24.
Article En | MEDLINE | ID: mdl-35535999

Hydration around nucleic acids, such as DNA and RNA, is an important factor not only for the stability of nucleic acids but also for their interaction with binding molecules. Thus, it is necessary to quantitatively elucidate the hydration properties of nucleic acids around a certain structure. In this study, volumetric changes in G-quadruplex (G4) RNA formation were investigated by systematically changing the number of G-quartet stacks under high pressure. The volumetric contribution at the level of each G4 structural unit revealed that the core G4 helix was significantly more dehydrated than the other parts, including the edges of G-quartets and loops. These findings will help in predicting the binding of G4 ligands on the surface of G4, depending on the chemical structure of the ligand and solution environment. Therefore, the preset volumetric parameter provides information that can predict molecular interactions in G4 formations during molecular crowding in cells.


G-Quadruplexes , DNA/chemistry , Ligands , RNA
12.
Life (Basel) ; 12(4)2022 Apr 07.
Article En | MEDLINE | ID: mdl-35455044

The human telomere region is known to contain guanine-rich repeats and form a guanine-quadruplex (G4) structure. As telomeres play a role in the regulation of cancer progression, ligands that specifically bind and stabilize G4 have potential therapeutic applications. However, as the human telomere sequence can form G4 with various topologies due to direct interaction by ligands and indirect interaction by the solution environment, it is of great interest to study the topology-dependent control of replication by ligands. In the present study, a DNA replication assay of a template with a human telomere G4 sequence in the presence of various ligands was performed. Cyclic naphthalene diimides (cNDI1 and cNDI2) efficiently increased the replication stall of the template DNA at G4 with an anti-parallel topology. This inhibition was stability-dependent and topology-selective, as the replication of templates with hybrid or parallel G4 structures was not affected by the cNDI and cNDI2. Moreover, the G4 ligand fisetin repressed replication with selectivity for anti-parallel and hybrid G4 structures without stabilization. Finally, the method used, referred to as quantitative study of topology-dependent replication (QSTR), was adopted to evaluate the correlation between the replication kinetics and the stability of G4. Compared to previous results obtained using a modified human telomere sequence, the relationship between the stability of G4 and the effect on the topology-dependent replication varied. Our results suggest that native human telomere G4 is more flexible than the modified sequence for interacting with ligands. These findings indicate that the modification of the human telomeric sequence forces G4 to rigidly form a specific structure of G4, which can restrict the change in topology-dependent replication by some ligands.

13.
Front Plant Sci ; 12: 760407, 2021.
Article En | MEDLINE | ID: mdl-34777441

Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.

14.
Plants (Basel) ; 10(10)2021 Sep 28.
Article En | MEDLINE | ID: mdl-34685853

Proline has been reported to play an important role in helping plants cope with several stresses, including salinity. This study investigates the relationship between proline accumulation and salt tolerance in an accession of Australian wild rice Oryza australiensis Domin using morphological, physiological, and molecular assessments. Seedlings of O. australiensis wild rice accession JC 2304 and two other cultivated rice Oryza sativa L. cultivars, Nipponbare (salt-sensitive), and Pokkali (salt-tolerant), were screened at 150 mM NaCl for 14 days. The results showed that O. australiensis was able to rapidly accumulate free proline and lower osmotic potential at a very early stage of salt stress compared to cultivated rice. The qRT-PCR result revealed that O. australiensis wild rice JC 2304 activated proline synthesis genes OsP5CS1, OsP5CS2, and OsP5CR and depressed the expression of proline degradation gene OsProDH as early as 1 h after exposure to salinity stress. Wild rice O. australiensis and Pokkali maintained their relative water content and cell membrane integrity during exposure to salinity stress, while the salt-sensitive Nipponbare failed to do so. An analysis of the sodium and potassium contents suggested that O. australiensis wild rice JC 2304 adapted to ionic stress caused by salinity by maintaining a low Na+ content and low Na+/K+ ratio in the shoots and roots. This demonstrates that O. australiensis wild rice may use a rapid accumulation of free proline as a strategy to cope with salinity stress.

15.
J Am Chem Soc ; 143(40): 16458-16469, 2021 10 13.
Article En | MEDLINE | ID: mdl-34554731

Ligands that bind to and stabilize guanine-quadruplex (G4) structures to regulate DNA replication have therapeutic potential for cancer and neurodegenerative diseases. Because there are several G4 topologies, ligands that bind to their specific types may have the ability to preferentially regulate the replication of only certain genes. Here, we demonstrated that binding ligands stalled the replication of template DNA at G4, depending on different topologies. For example, naphthalene diimide derivatives bound to the G-quartet of G4 with an additional interaction between the ligand and the loop region of a hybrid G4 type from human telomeres, which efficiently repressed the replication of the G4. Thus, these inhibitory effects were not only stability-dependent but also topology-selective based on the manner in which G4 structures interacted with G4 ligands. Our original method, referred to as a quantitative study of topology-dependent replication (QSTR), was developed to evaluate correlations between replication rate and G4 stability. QSTR enabled the systematic categorization of ligands based on topology-dependent binding. It also demonstrated accuracy in determining quantitatively how G4 ligands control the intermediate state of replication and the kinetics of G4 unwinding. Hence, the QSTR index would facilitate the design of new drugs capable of controlling the topology-dependent regulation of gene expression.


G-Quadruplexes
16.
Trends Plant Sci ; 25(11): 1131-1140, 2020 11.
Article En | MEDLINE | ID: mdl-32467063

Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.


Apoptosis , Plants , Animals , Plant Proteins
17.
Sci Rep ; 10(1): 2504, 2020 02 13.
Article En | MEDLINE | ID: mdl-32054927

The relationship of i-motif DNAs with cancer has prompted the development of specific ligands to detect and regulate their formation. Some plant flavonols show unique fluorescence and anti-cancer properties, which suggest the utility of the theranostics approach to cancer therapy related to i-motif DNA. We investigated the effect of the plant flavonol, fisetin (Fis), on the physicochemical property of i-motif DNAs. Binding of Fis to the i-motif from the promoter region of the human vascular endothelial growth factor (VEGF) gene dramatically induced the excited state intramolecular proton transfer (ESIPT) reaction that significantly enhanced the intensity of the tautomer emission band of Fis. This unique response was due to the coincidence of the structural change from i-motif to the hairpin-like structure which is stabilized via putative Watson-Crick base pairs between some guanines within the loop region of the i-motif and cytosines in the structure. As a result, the VEGF i-motif did not act as a replication block in the presence of Fis, which indicates the applicability of Fis for the regulation of gene expression of VEGF. The fluorescence and biological properties of Fis may be utilised for theranostics applications for cancers related to a specific cancer-related gene, such as VEGF.


Antineoplastic Agents/pharmacology , Flavonoids/pharmacology , Neoplasms/genetics , Nucleotide Motifs/drug effects , Theranostic Nanomedicine , Vascular Endothelial Growth Factor A/genetics , Flavonols , Fluorescence , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Promoter Regions, Genetic/drug effects , Protons , Spectrometry, Fluorescence
18.
Nucleic Acids Res ; 48(3): 1108-1119, 2020 02 20.
Article En | MEDLINE | ID: mdl-31912160

G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


DNA/chemistry , Fluorescent Dyes , G-Quadruplexes , Benzimidazoles/chemistry , Benzothiazoles/chemistry , Fluorescent Dyes/chemistry , Genes, myc , Molecular Dynamics Simulation
19.
Front Plant Sci ; 10: 524, 2019.
Article En | MEDLINE | ID: mdl-31105725

Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced.

20.
Front Plant Sci ; 9: 788, 2018.
Article En | MEDLINE | ID: mdl-29963065

Iron deficiency currently affects over two billion people worldwide despite significant advances in technology and society aimed at mitigating this global health problem. Biofortification of food staples with iron (Fe) represents a sustainable approach for alleviating human Fe deficiency in developing countries, however, biofortification efforts have focused extensively on cereal staples while pulses have been largely overlooked. In this study we describe a genetic engineering (GE) approach to biofortify the pulse crop, chickpea (Cicer arietinum L.), with Fe using a combination of the chickpea nicotianamine synthase 2 (CaNAS2) and soybean (Glycine max) ferritin (GmFER) genes which function in Fe transport and storage, respectively. This study consists of three main components: (1) the establishment for baseline Fe concentration of existing germplam, (2) the isolation and study of expression pattern of the novel CaNAS2 gene, and (3) the generation of GE chickpea overexpressing the CaNAS2 and GmFER genes. Seed of six commercial chickpea cultivars was collected from four different field locations in Australia and assessed for seed Fe concentration. The results revealed little difference between the cultivars assessed, and that chickpea seed Fe was negatively affected where soil Fe bioavailability is low. The desi cultivar HatTrick was then selected for further study. From it, the CaNAS2 gene was cloned and its expression in different tissues examined. The gene was found to be expressed in multiple vegetative tissues under Fe-sufficient conditions, suggesting that it may play a housekeeping role in systemic translocation of Fe. Two GE chickpea events were then generated and the overexpression of the CaNAS2 and GmFER transgenes confirmed. Analysis of nicotianamine (NA) and Fe levels in the GE seeds revealed that NA was nearly doubled compared to the null control while Fe concentration was not changed. Increased NA content in chickpea seed is likely to translate into increased Fe bioavailability and may thus overcome the effect of the bioavailability inhibitors found in pulses; however, further study is required to confirm this. This is the first known example of GE Fe biofortified chickpea; information gleaned from this study can feed into future pulse biofortification work to help alleviate global Fe deficiency.

...