Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2206612120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603758

RESUMEN

Genetic association studies have identified hundreds of independent signals associated with type 2 diabetes (T2D) and related traits. Despite these successes, the identification of specific causal variants underlying a genetic association signal remains challenging. In this study, we describe a deep learning (DL) method to analyze the impact of sequence variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that our model learns islet-specific transcription factor (TF) regulatory patterns and can be used to prioritize candidate causal variants. At 101 genetic signals associated with T2D and related glycemic traits where multiple variants occur in linkage disequilibrium, our method nominates a single causal variant for each association signal, including three variants previously shown to alter reporter activity in islet-relevant cell types. For another signal associated with blood glucose levels, we biochemically test all candidate causal variants from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future research, we publicly distribute our model and islet enhancer perturbation scores across ~67 million genetic variants. We anticipate that DL methods like the one presented in this study will enhance the prioritization of candidate causal variants for functional studies.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus Tipo 2 , Elementos de Facilitación Genéticos , Islotes Pancreáticos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Variación Genética , Humanos , Simulación por Computador
3.
Nat Genet ; 53(8): 1166-1176, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326544

RESUMEN

Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR-FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across >325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Adaptadoras Transductoras de Señales/genética , Teorema de Bayes , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , delta-5 Desaturasa de Ácido Graso , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Ácido Graso Desaturasas/genética , Citometría de Flujo , Factor de Transcripción GATA1/genética , Humanos , Células K562 , Proteínas con Dominio LIM/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas/genética , Sitios de Carácter Cuantitativo , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA