Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 203: 106027, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084785

RESUMEN

Magnaporthe oryzae is a rice blast pathogen that seriously threatens rice yield. Benzovindiflupyr is a succinate dehydrogenase inhibitor (SDHI) fungicide that effectively controls many crop diseases. Benzovindiflupyr has a strong inhibitory effect on M. oryzae; however, control of rice blast by benzovindiflupyr and risk of resistance to benzovindiflupyr are not well studied in this pathogen. In this study, six benzovindiflupyr-resistant strains were obtained by domestication induced in the laboratory. The MoSdhBH245D mutation was the cause of M. oryzae resistance to benzovindiflupyr, which was verified through succinate dehydrogenase (SDH) activity assays, molecular docking, and site-specific mutations. Survival fitness analysis showed no significant difference between the benzovindiflupyr-resistant and parent strains. Positive cross-resistance to benzovindiflupyr and other SDHIs and negative cross-resistance to azoxystrobin were observed. Therefore, the risk of benzovindiflupyr resistance in M. oryzae might be medium to high. It should be combined with other classes of fungicides (tebuconazole and azoxystrobin) to slow the development of resistance.


Asunto(s)
Farmacorresistencia Fúngica , Fungicidas Industriales , Mutación , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , Magnaporthe/efectos de los fármacos , Magnaporthe/genética , Simulación del Acoplamiento Molecular , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrobilurinas/farmacología , Ascomicetos
2.
Pest Manag Sci ; 80(9): 4746-4756, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38816914

RESUMEN

BACKGROUND: Fludioxonil is a fungicide used to control gray mold. However, the frequency of resistance in the field is low, and highly resistant strains are rarely isolated. The biological fitness of the resistant strain is lower than that of the wild strain. Therefore, the molecular mechanism underlying the decrease in the fitness of the fludioxonil-resistant strain of Botrytis cinerea was explored to provide a theoretical basis for resistance monitoring and management. RESULTS: Transcriptome analysis was performed on five different-point mutant resistant strains of fludioxonil, focusing on mining and screening candidate genes that lead to reduced fitness of the resistant strains and the functional verification of these genes. The differentially expressed genes (DEGs) of the five point-mutation resistant strains intersected with 1869 DEGs. Enrichment analysis showed that three downregulated genes (Bcin05g07030, Bcgad1, and Bcin03g05840) were enriched in multiple metabolic pathways and were downregulated in both domesticated strains. Bcin05g07030 and Bcin03g05840 were involved in mycelial growth and development, pathogenicity, and conidial yield, and negatively regulated oxidative stress and cell wall synthesis. Bcgad1 was involved in mycelial growth and development, conidial yield, oxidative stress, and cell wall synthesis. Furthermore, Bcin05g07030 was involved in osmotic stress and spore germination, whereas Bcin03g05840 and Bcgad1 negatively regulated osmotic stress and cell wall integrity. CONCLUSION: These results enable us to further understand the molecular mechanism underlying the decrease in the biological fitness of B. cinerea fludioxonil-resistant strains. © 2024 Society of Chemical Industry.


Asunto(s)
Botrytis , Dioxoles , Farmacorresistencia Fúngica , Fungicidas Industriales , Perfilación de la Expresión Génica , Pirroles , Botrytis/genética , Botrytis/efectos de los fármacos , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Pirroles/farmacología , Dioxoles/farmacología , Aptitud Genética , Transcriptoma
3.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598410

RESUMEN

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Histidina Quinasa , Hidantoínas , Pirroles , Botrytis/genética , Botrytis/efectos de los fármacos , Botrytis/enzimología , Dioxoles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacología , Pirroles/farmacología , Pirroles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Enfermedades de las Plantas/microbiología , Simulación del Acoplamiento Molecular , Mutación , Mutagénesis Sitio-Dirigida
4.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366355

RESUMEN

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Mutagénesis , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Puccinia/fisiología , Plantas Modificadas Genéticamente
5.
Plant J ; 118(1): 90-105, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113332

RESUMEN

Necrotrophic fungal plant pathogens employ cell death-inducing proteins (CDIPs) to facilitate infection. However, the specific CDIPs and their mechanisms in pathogenic processes of Sclerotinia sclerotiorum, a necrotrophic pathogen that causes disease in many economically important crop species, have not yet been clearly defined. This study found that S. sclerotiorum secretes SsXyl2, a glycosyl hydrolase family 11 xylanase, at the late stage of hyphal infection. SsXyl2 targets the apoplast of host plants to induce cell death independent of xylanase activity. Targeted disruption of SsXyl2 leads to serious impairment of virulence, which can be recovered by a catalytically impaired SsXyl2 variant, thus supporting the critical role of cell death-inducing activity of SsXyl2 in establishing successful colonization of S. sclerotiorum. Remarkably, infection by S. sclerotiorum induces the accumulation of Nicotiana benthamiana hypersensitive-induced reaction protein 2 (NbHIR2). NbHIR2 interacts with SsXyl2 at the plasma membrane and promotes its localization to the cell membrane and cell death-inducing activity. Furthermore, gene-edited mutants of NbHIR2 displayed increased resistance to the wild-type strain of S. sclerotiorum, but not to the SsXyl2-deletion strain. Hence, SsXyl2 acts as a CDIP that manipulates host cell physiology by interacting with hypersensitive induced reaction protein to facilitate colonization by S. sclerotiorum. These findings provide valuable insights into the pathogenic mechanisms of CDIPs in necrotrophic pathogens and lead to a more promising approach for breeding resistant crops against S. sclerotiorum.


Asunto(s)
Ascomicetos , Fitomejoramiento , Plantas , Virulencia , Nicotiana , Muerte Celular , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA