Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 46(8): 2296-2309, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37294176

RESUMEN

While variation in mean annual precipitation (MAP) of the native habitat of a species has been shown to determine the ability of a species to resist a hydraulic decrease during drought, it remains unknown whether these variations in MAP also influence the ability of a species to recover and survive drought. Leaf hydraulic and gas exchange recovery following drought and the underlying mechanisms of these responses in six Caragana species from habitats along a large precipitation gradient were investigated during rehydration in a common garden. The gas exchange of species from arid habitats recovered more rapidly during rehydration after mild, moderate and severe drought stress treatments than species from humid habitats. The recovery of gas exchange was not associated with foliar abscisic acid concentration, but tightly related to the recovery of leaf hydraulic conductance (Kleaf ). The recovery of Kleaf was associated with the loss of Kleaf during dehydration under mild and moderate drought stress, and to leaf xylem embolism formation under severe drought stress. Results pointed to the different ability to recover in gas exchange in six Caragana species post-drought is associated with the MAP of the species in its native habitat.


Asunto(s)
Caragana , Agua , Agua/fisiología , Sequías , Hojas de la Planta/fisiología , Xilema/fisiología
2.
Tree Physiol ; 43(6): 883-892, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-36547259

RESUMEN

Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.


Asunto(s)
Fraxinus , Estomas de Plantas , Sequías , Hojas de la Planta , Agua , Ácido Abscísico , Etilenos
3.
Tree Physiol ; 42(2): 325-336, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34387352

RESUMEN

Resprouting plants are distributed in many vegetation communities worldwide. With increasing resprout age post-severe-disturbance, new stems grow rapidly at their early age, and decrease in their growth with gradually decreasing water status thereafter. However, there is little knowledge about how stem hydraulic strategies and anatomical traits vary post-disturbance. In this study, the stem water potential (Ψstem), maximum stem hydraulic conductivity (Kstem-max), water potential at 50% loss of hydraulic conductivity (Kstem  P50) and anatomical traits of Caragana korshinkii resprouts were measured during a 1- to 13-year post-disturbance period. We found that the Kstem-max decreased with resprout age from 1-year-old resprouts (84.2 mol m-1 s-1 MPa-1) to 13-year-old resprouts (54.2 mol m-1 s-1 MPa-1) as a result of decreases in the aperture fraction (Fap) and the sum of aperture area on per unit intervessel wall area (Aap). The Kstem  P50 of the resprouts decreased from 1-year-old resprouts (-1.8 MPa) to 13-year-old resprouts (-2.9 MPa) as a result of increases in vessel implosion resistance (t/b)2, wood density (WD), vessel grouping index (GI) and decreases in Fap and Aap. These shifts in hydraulic structure and function resulted in an age-based divergence in hydraulic strategies i.e., a change from an acquisitive strategy to a conservative strategy, with increasing resprout age post-disturbance.


Asunto(s)
Caragana , Hojas de la Planta , Tallos de la Planta , Agua , Madera , Xilema
4.
New Phytol ; 230(5): 2001-2010, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33586157

RESUMEN

Plants control water-use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well-watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.


Asunto(s)
Helechos , Ácido Abscísico , Deshidratación , Sequías , Hojas de la Planta , Estomas de Plantas , Semillas , Agua
5.
Plant Cell Environ ; 44(2): 399-411, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131059

RESUMEN

Drought is a cyclical phenomenon in natural environments. During dehydration, stomatal closure is mainly regulated by abscisic acid (ABA) dynamics that limit transpiration in seed plants, but following rehydration, the mechanism of gas exchange recovery is still not clear. In this study, leaf water potential (ψleaf ), stomatal conductance (gs ), leaf hydraulic conductance (Kleaf ), foliar ABA level, ethylene emission rate in response to dehydration and rehydration were investigated in four Caragana species with isohydric (Caragana spinosa and C. pruinosa) and anisohydric (C. intermedia and C. microphylla) traits. Two isohydric species with ABA-induced stomatal closure exhibited more sensitive gs and Kleaf to decreasing ψleaf than two anisohydric species which exhibited a switch from ABA to water potential-driven stomatal closure during dehydration. Following rehydration, the recovery of gas exchange was not associated with a decrease in ABA level but was strongly limited by the degradation of the ethylene emission rate in all species. Furthermore, two anisohydric species with low drought-induced ethylene production exhibited more rapid recovery in gas exchange upon rehydration. Our results indicated that ethylene is a key factor regulating the drought-recovery ability in terms of gas exchange, which may shape species adaptation to drought and potential species distribution.


Asunto(s)
Caragana/fisiología , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transpiración de Plantas/fisiología , Ácido Abscísico/metabolismo , Adaptación Fisiológica , Sequías , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Semillas/fisiología , Especificidad de la Especie , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...