Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(7)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380747

RESUMEN

The molecular dynamics with electronic friction (MDEF) approach can accurately describe nonadiabatic effects at metal surfaces in the weakly nonadiabatic limit. That being said, the MDEF approach treats nuclear motion classically such that the nuclear quantum effects are completely missing in the approach. To address this limitation, we combine Electronic Friction with Ring Polymer Molecular Dynamics (EF-RPMD). In particular, we apply the averaged electronic friction from the metal surface to the centroid mode of the ring polymer. We benchmark our approach against quantum dynamics to show that EF-RPMD can accurately capture zero-point energy as well as transition dynamics. In addition, we show that EF-RPMD can correctly predict the electronic transfer rate near metal surfaces in the tunneling limit as well as the barrier crossing limit. We expect that our approach will be very useful to study nonadiabatic dynamics near metal surfaces when nuclear quantum effects become essential.

2.
J Chem Phys ; 157(16): 164701, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36319401

RESUMEN

Aqueous rutile TiO2(110) is the most widely studied water-oxide interface, and yet questions about water dissociation are still controversial. Theoretical studies have systematically investigated the influence of the slab thickness on water dissociation energy (Ediss) at 1 monolayer coverage using static density functional theory calculation and found that Ediss exhibits odd-even oscillation with respect to the TiO2 slab thickness. However, less studies have accounted for the full solvation of an aqueous phase using ab initio molecular dynamics due to high computational costs in which only three, four, and five trilayer models of rutile(110)-water interfaces have been simulated. Here, we report Machine Learning accelerated Molecular Dynamics (MLMD) simulations of defect-free rutile(110)-water interfaces, which allows for a systematic study of the slab thickness ranging from 3 to 17 trilayers with much lower costs while keeping ab initio accuracy. Our MLMD simulations show that the dissociation degree of surface water (α) oscillates with the slab thickness and converges to ∼2% as the TiO2 slab becomes thicker. Converting α into dissociation free energy (ΔAdiss) and comparing with dissociation total energy Ediss calculated with a single monolayer of water, we find that the full solvation of the interfaces suppresses surface water from dissociating. It is interesting to note that the machine learning potential trained from the dataset containing exclusively the five trilayer TiO2 model exhibits excellent transferability to other slab thicknesses and further captures the oscillating behavior of surface water dissociation. Detailed analyses indicate that the central plane in odd trilayer slabs modulates the interaction between double trilayers and, thus, the bonding strength between terminal Ti and water, which affects pKa of surface water and water dissociation degree.

3.
J Am Chem Soc ; 144(20): 8938-8944, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35576325

RESUMEN

A concise and divergent synthesis of the polychlorinated marine steroids clionastatin A and B from inexpensive testosterone has been achieved through a unique two-stage chlorination-oxidation strategy. Key features of the two-stage synthesis include (1) conformationally controlled, highly stereoselective dichlorination at C1 and C2 and C4-OH-directed C19 oxygenation followed by a challenging neopentyl chlorination to install three chlorine atoms; (2) desaturation through one-pot photochemical dibromination-reductive debromination and anti-Markovnikov olefin oxidation by photoredox-metal dual catalysis to enhance the oxidation level of the backbone; and (3) Wharton transposition to furnish the D-ring enone. This synthesis proved that the introduction of the C19 chloride in the early stage of the synthesis secured the stability of the backbone against susceptibility to aromatization during the oxidation stage.


Asunto(s)
Alquenos , Cloro , Catálisis , Oxidación-Reducción , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...