Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Toxics ; 12(4)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38668485

Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.

2.
Environ Sci Technol ; 58(18): 7860-7869, 2024 May 07.
Article En | MEDLINE | ID: mdl-38647522

Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.


Mercury , Mercury/metabolism , Mass Spectrometry , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Food Chain , Single-Cell Analysis
3.
Environ Sci Technol ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436579

Harmful algal blooms (HABs) pose a significant ecological threat and economic detriment to freshwater environments. In order to develop an intelligent early warning system for HABs, big data and deep learning models were harnessed in this study. Data collection was achieved utilizing the vertical aquatic monitoring system (VAMS). Subsequently, the analysis and stratification of the vertical aquatic layer were conducted employing the "DeepDPM-Spectral Clustering" method. This approach drastically reduced the number of predictive models and enhanced the adaptability of the system. The Bloomformer-2 model was developed to conduct both single-step and multistep predictions of Chl-a, integrating the " Alert Level Framework" issued by the World Health Organization to accomplish early warning for HABs. The case study conducted in Taihu Lake revealed that during the winter of 2018, the water column could be partitioned into four clusters (Groups W1-W4), while in the summer of 2019, the water column could be partitioned into five clusters (Groups S1-S5). Moreover, in a subsequent predictive task, Bloomformer-2 exhibited superiority in performance across all clusters for both the winter of 2018 and the summer of 2019 (MAE: 0.175-0.394, MSE: 0.042-0.305, and MAPE: 0.228-2.279 for single-step prediction; MAE: 0.184-0.505, MSE: 0.101-0.378, and MAPE: 0.243-4.011 for multistep prediction). The prediction for the 3 days indicated that Group W1 was in a Level I alert state at all times. Conversely, Group S1 was mainly under an Level I alert, with seven specific time points escalating to a Level II alert. Furthermore, the end-to-end architecture of this system, coupled with the automation of its various processes, minimized human intervention, endowing it with intelligent characteristics. This research highlights the transformative potential of integrating big data and artificial intelligence in environmental management and emphasizes the importance of model interpretability in machine learning applications.

4.
Biotechnol Biofuels Bioprod ; 17(1): 26, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360745

The cultivation of microalgae and microalgae-bacteria consortia provide a potential efficient strategy to fix CO2 from waste gas, treat wastewater and produce value-added products subsequently. This paper reviews recent developments in CO2 fixation and wastewater treatment by single microalgae, mixed microalgae and microalgae-bacteria consortia, as well as compares and summarizes the differences in utilizing different microorganisms from different aspects. Compared to monoculture of microalgae, a mixed microalgae and microalgae-bacteria consortium may mitigate environmental risk, obtain high biomass, and improve the efficiency of nutrient removal. The applied microalgae include Chlorella sp., Scenedesmus sp., Pediastrum sp., and Phormidium sp. among others, and most strains belong to Chlorophyta and Cyanophyta. The bacteria in microalgae-bacteria consortia are mainly from activated sludge and specific sewage sources. Bioengineer in CBB cycle in microalgae cells provide effective strategy to achieve improvement of CO2 fixation or a high yield of high-value products. The mechanisms of CO2 fixation and nutrient removal by different microbial systems are also explored and concluded, the importance of microalgae in the technology is proven. After cultivation, microalgae biomass can be harvested through physical, chemical, biological and magnetic separation methods and used to produce high-value by-products, such as biofuel, feed, food, biochar, fertilizer, and pharmaceutical bio-compounds. Although this technology has brought many benefits, some challenging obstacles and limitation remain for industrialization and commercializing.

5.
Environ Sci Technol ; 58(1): 805-815, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38156625

Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (•OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their •OH photogeneration capabilities. These compounds demonstrated a substantial capacity for •OH production, exhibiting quantum yields of 0.1-5.9 × 10-3 through direct photolysis under 305 nm and 0.2-9.5 × 10-3 through a triplet sensitizer (4-benzoylbenzoic acid)-inducing reaction under 365 nm LED irradiation. Moreover, the chlorinated compounds exhibited higher light absorption and •OH quantum yields compared to those of their unchlorinated counterparts. The •OH photogeneration capacity of these compounds exhibited a positive correlation with their triplet state one-electron oxidation potentials. Molecular-level compositional analysis revealed that aromatic structures rich in hydroxyl and carboxyl groups (e.g., O/C > 0.5 with H/C < 1.5) within DOM serve as crucial sources of •OH, and chlorination of these compounds significantly enhances their capacity to generate •OH upon irradiation. This study provides novel insights into the enhanced photogeneration of •OH from chlorinated DOM, which is helpful for understanding the fate of trace pollutants in chlorinated waters.


Hydroxyl Radical , Water Pollutants, Chemical , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Dissolved Organic Matter , Photolysis , Oxidation-Reduction , Carboxylic Acids , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 345: 140398, 2023 Dec.
Article En | MEDLINE | ID: mdl-37844705

Chlorella vulgaris (C. vulgaris) can provide the means to fix CO2 from complicated flue gas, treat wastewater and reach a sustainable production of petrochemical substitutes simultaneously. However, a prerequisite to achieving this goal is to promote C. vulgaris growth and improve the CO2-to-fatty acids conversion efficiency under different conditions of flue gas and wastewater. Thus, the addition of indole-3-acetic acid (IAA) in C. vulgaris cultivation was proposed. Results showed that C. vulgaris were more easily inhibited by 100 ppm NO and 200 ppm SO2 under low nitrogen (N) condition. NO and SO2 decreased the carbon (C) fixation; but increased N and sulfur (S) fixation. IAA adjusted the content of superoxide dismutase (SOD) and malondialdehyde (MDA), improved the expression of psbA, rbcL, and accD, attenuated the toxicity of NO and SO2 on C. vulgaris, and ultimately improved cell growth (2014.64-2458.16 mgdw·L-1) and restored CO2 fixation rate (170.98-220.92 mg CO2·L-1·d-1). Moreover, wastewater was found to have a high treatment efficiency because C. vulgaris grew well in all treatments, and the maximal removal rates of both N and phosphorus (P) reached 100%. Metabonomic analysis showed that IAA, "NO and SO2" were involved in the down-regulated and up-regulated expression of multiple metabolites, such as fatty acids, amino acids, and carbohydrates. IAA was beneficial for improving lipid accumulation with 24584.21-27634.23 µg g-1, especially monounsaturated fatty acids (MUFAs) dominated by 16-18 C fatty acids, in C. vulgaris cells. It was concluded that IAA enhanced the CO2 fixation, fatty acids production of C. vulgaris and its nutrients removal rate.


Chlorella vulgaris , Microalgae , Water Purification , Chlorella vulgaris/metabolism , Wastewater , Lipids , Plant Growth Regulators/metabolism , Carbon Dioxide/metabolism , Fatty Acids/metabolism , Metabolome , Biomass , Microalgae/metabolism
7.
Ecotoxicol Environ Saf ; 264: 115466, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37714037

Calcium peroxide (CP) is an oxidizing agent that can gradually release hydrogen peroxide (HP) to achieve selective killing of cyanobacteria in water blooms, and reduce the phosphorus content in the water column. Despite the potential of CP for use in cyanobacterial water bloom disposal, there is a lack of research on the mechanism of oxidative damage on cyanobacterial cells by calcium peroxide. Further studies are required to comprehend the underlying scientific principles and potential risks and benefits of applying this approach to cyanobacteria disposal. In this investigation, we employed varying doses of CP for the treatment of Microcystis aeruginosa (M. aeruginosa), which resulted in the following findings: (1) the HP released from CP can damage the photosystem II of M. aeruginosa, reduce cell photosynthetic pigment content, intensify the degree of membrane lipid peroxidation, and increase the extracellular protein content; (2) CP significantly increased the soluble extracellular polysaccharide (sEPS) and bound extracellular polysaccharide (bEPS) content of cells (p < 0.05), causing the cells to exist as agglomerates and effectively allowing them to flocculate and precipitate, reducing the turbidity of the water body; (3) The increased dose elevated the pH and calcium ions significantly decreased the orthophosphate content, resulting in an increase in extracellular alkaline phosphatase activity, but possibly increasing the total extracellular nitrogen content. These results suggested that CP is an effective chemical algaecide for cyanobacteria, and has the potential to be applied to dispose of cyanobacterial blooms while reducing the phosphorus content of the water column and further inhibiting the growth and proliferation of cells.


Microcystis , Hydrogen Peroxide , Oxidants , Phosphorus
8.
J Hazard Mater ; 460: 132396, 2023 10 15.
Article En | MEDLINE | ID: mdl-37672994

Flavonoids, common natural polyphenolic compounds from plants, have been proposed as highly effective and safe algicides. However, the molecular mechanism of flavonoids inhibiting Microcystis aeruginosa remains unclear. This study aims in exploring the global transcriptional changes and molecular docking in cyanobacterial cells in response to flavonoids. Transcriptomic analysis revealed that 5,4'-dihydroxyflavone (DHF) primarily affected the genes transcription of iron and zinc ion transport, resulting in the blockage of transport for iron (II), iron (III) and zinc (II), which eventually led to a decrease in intracellular iron and zinc content. 5,4'-DHF can also interfere with iron and zinc transport by binding to metal ion transport-related proteins, leading to eliminated biological activities in M. aeruginosa. Meanwhile, 5,4'-DHF inhibit microcystin synthesis and reduce the content of intercellular toxin by inhibiting the transcription of mcyC and binding with McyC protein, implying that 5,4'-DHF have potential to reduce the risk of microcystins in the environment. Moreover, iron starvation and down-regulation of photosynthesis-related genes transcription led to the inhibition of electron transport in photosynthetic system. These results provide more information for the inhibitory mechanism of flavonoids, and the inhibition of flavonoids on metal ion transmembrane transport provides a new perspective for the development of allelochemical algicides.


Herbicides , Microcystis , Down-Regulation , Zinc/toxicity , Iron , Molecular Docking Simulation , Ion Transport , Flavonoids/pharmacology
9.
Ecotoxicol Environ Saf ; 263: 115378, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37598544

A detailed understanding the metals binding with algal organic matter (AOM) is essential to gain a deeper insight into the toxicity and migration of metals in algae cell. However, the molecular complexation mechanism of the metals binding with AOM remains unclear. In this study, cadmium ion (Cd2+) binding properties of AOMs from Scenedesmus obliquus, which included extracellular organic matter (EOM) and intracellular organic matter (IOM), were screened. When Cd2+ < 0.5 mg/L, the accumulation of Cd2+ could reach 40%, while Cd2+ > 0.5 mg/L, the accumulation of Cd2+ was only about 10%. EOM decreased gradually (from 8.51 to 3.98 mg/L), while IOM increased gradually (from 9.62 to 21.00 mg/L). The spectral characteristics revealed that IOM was richer in peptides/proteins and had more hydrophilic than EOM. Both EOM and IOM contained three protein-like components (containing tryptophan and tyrosine) and one humic-like component, and their contents in IOM were higher than that in EOM. The tryptophan protein-like substances changed greatly during Cd2+ binding, and that the tryptophan protein-like substances complexed to Cd2+ before tyrosine protein-like substances in IOM was identified. Moreover, the functional groups of N-H, O-H, and CO in AOM played an important role, and the N-H group was priority to interacts with Cd2+ in the complexing process. More functional groups (such as C-O and C-N) were involved in the metals complexing in EOM than in IOM. It could be concluded that Cd2+ stress promoted the secretion of AOM in Scenedesmus obliquus, and proteins in AOM could complex Cd2+ and alleviate its toxicity to algal cell. These findings provided deep insights into the interaction mechanism of AOM with Cd2+ in aquatic environments.


Chlorophyceae , Scenedesmus , Cadmium/toxicity , Tryptophan , Tyrosine
10.
Sci Total Environ ; 884: 163665, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37088397

The largest engineered water diversion project-the Middle Route of the South to North Water Diversion Project (MRP), is of strategic importance in solving the problem of the northern water shortage in China. Eukaryotic plankton are important to the water quality stability in the MRP, but little has been reported about their dynamics and assembly processes, especially for abundant and rare communities. In this study, amplicon sequencing was used to investigate the eukaryotic plankton communities. The results revealed both abundant and rare communities exhibited similar distance-decay patterns, but abundant communities were particularly subject to environmental heterogeneity and played an important role in determining seasonal differences in eukaryotic plankton communities and alpha diversity. In the MRP, with its strong hydrodynamic exchange, abundant and rare communities were mainly affected by stochastic processes, especially homogenizing dispersal. In addition, abundant communities were subject to moderate variable selection (25 %) and rare communities were affected by a higher proportion of dispersal limitation (27 % vs. 10 %). The variation in water temperature and water velocity led to a shift from a stochastic to a deterministic process dominating the assembly of abundant communities. This study extends insights into the dynamics and assembly processes of abundant and rare eukaryotic plankton communities in the large, engineered drinking water diversion project, which is also useful for the management and regulation of the MRP.


Drinking Water , Eukaryota , China , Hydrodynamics , Plankton
11.
Sci Total Environ ; 878: 162559, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-36907406

Rivers are severely polluted by multiple anthropogenic stressors. An unevenly distributed landscape pattern can aggravate the deterioration of water quality in rivers. Identifying the impacts of landscape patterns on the spatial characteristics of water quality is helpful for river management and water sustainability. Herein we quantified the nationwide water quality degradation in China's rivers and analyzed its responses to spatial patterns of anthropogenic landscapes. The results showed that the spatial patterns of river water quality degradation had a strong spatial inequality and worsened severely in eastern and northern China. The spatial aggregation of agricultural/urban landscape and the water quality degradation exhibits high consistency. Our findings suggested that river water quality would further deteriorate from high spatial aggregation of cities and agricultures, which reminded us that the dispersion of anthropogenic landscape patterns might effectively alleviate water quality pressures.

12.
Aquat Toxicol ; 258: 106499, 2023 May.
Article En | MEDLINE | ID: mdl-36965429

With the development of single cell analysis techniques, the concept of precision toxicology has been proposed in recent years. Due to the heterogeneity of cells, we need to perform toxicological assessments on individual cells. Microalgae, one kind of important primary producers, play as a major pathway by which heavy metals enter the food chain and thus accumulate/transfer to higher trophic levels. Herein, the biosorption of Cd (Ex-Cd) and bioaccumulation of Cd (In-Cd) for Synechocystis sp. PCC 6803 were investigated by online 3D droplet microfluidic device combined with inductively coupled plasma mass spectrometry detection. Meanwhile, the algal toxicological responses of the algae cell to Cd2+ exposure under different concentration (50, 100, and 150 µg L - 1) and time (15 min, 24, 48 and 96 h) were studied. Combining single-cell analysis with toxicological indicators, the toxicity mechanism of Cd2+to algal was discussed. The single cell analysis results revealed heterogeneity in cellular uptake of Cd2+. The proportion of Cd-containing cells and Cd content in single algal cells all reached the maximum at 24 h. The uptake of Cd2+ occurred within 15 min under all tested exposure concentrations and a large part of Cd2+ were adsorbed on the algal cells surface. The Pearson correlation analysis showed that cell density, chlorophyll a and carotenoids were significantly negatively correlated with Cd accumulation, whereas ROS level and SOD activity were significantly positively correlated with Cd accumulation. It suggested that Cd2+accumulated intracellular would show toxic effects on the algal cells and oxidative stress is the main mechanism of Cd toxicity to algal cells. This work promotes our understanding of the toxicological responses of microalgae under Cd stress at single cells level.


Metals, Heavy , Synechocystis , Water Pollutants, Chemical , Cadmium/toxicity , Synechocystis/metabolism , Chlorophyll A/metabolism , Water Pollutants, Chemical/toxicity , Metals, Heavy/metabolism
13.
J Environ Manage ; 331: 117217, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36621023

Extensive water diversion projects that have been increasingly installed worldwide transport essential water resources as well as a large number of biota. However, studies of the dynamic processes of such transport have been limited. The South-to-North Water Diversion Project of China is the largest manmade water diversion system ever constructed. Here, in a year-long project, we used environmental DNA (eDNA) metabarcoding to assess fish biodiversity and assemblage composition along the Project's 1277-km main canal, while also investigating the temporal, spatial, and functional trait drivers of changes in the fish assemblages. Together, 45 fish taxa were detected, with substantial compositional variations between seasons. The number of detected species typically dropped upon entering the canal but remained relatively constant along the canal's length. Spatial variations in fish assemblages were generally dominated by the turnover component over nestedness, and a positive spatial autocorrelation of qualitative assemblage composition was detected within 80 km in all seasons. Furthermore, several functional traits, such as smaller body size, invertivorous diet, rheophilic living, and lithophilic and demersal spawning, were positive predictors of fish presence along the length of the canal and they may boost species chances of introduction to the recipient areas. Our results provide crucial information for ecological management of diversion projects and have key implications for modelling and predicting foreign species invasion through water transfers.


DNA, Environmental , Water , Animals , Seasons , Biodiversity , Biota , Fishes/genetics , Ecosystem , Environmental Monitoring/methods
14.
Environ Res ; 222: 115341, 2023 04 01.
Article En | MEDLINE | ID: mdl-36706905

Following the Three Gorges Reservoir (TGR) impoundment, many tributaries were turned into bays; hydrodynamic conditions of TGR profoundly changed the residence time, temperature, and nutrient distributions of bays, and nutrient enrichment occurred in these bays. However, little research has been done on the effects of water level qqfluctuations (WLFs) of TGR on the bay. In this study, Xiangxi Bay (XXB), one of the tributaries of TGR, was selected as the delegate to construct and calibrate a two-dimensional hydrodynamic-temperature-tracer-water quality model based on the CE-QUAL-W2. The results were the following: 1) In spring, as total nitrogen (TN) in the TGR tended to be higher than that in the XXB, the downward WLF increased water exchange, TGR-XXB nutrient flux and TN in the epilimnion of the XXB, and decreased the water exchange and TN in the hypolimnion of the XXB. The upward WLF did the opposite. The situation would be reversed in autumn. 2) Under a larger magnitude or a shorter period of WLF, its corresponding effects on the water exchange and TN increased. 2) Both the downward and upward modes of WLF helped to decrease the thermal stratification of XXB. 4) The upward/downward WLF could be used to decrease the epilimnetic TN of XXB in spring/autumn, and was suggested to reduce the local algal bloom. The WLFs by the TGR regulation could profoundly change the water exchange and nutrient distribution in the bay, which helped to control nutrient concentrations and prevent algal blooms.


Bays , Water Pollutants, Chemical , Water Quality , Eutrophication , Rivers , Nutrients , Nitrogen/analysis , China , Environmental Monitoring , Water Pollutants, Chemical/analysis
15.
J Environ Manage ; 326(Pt B): 116735, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36402021

The effect of sediment and residual fish feed on aquaculture water bodies has gained increasing attention to alleviate the eutrophication and heavy metals enrichment induced by aquaculture. Thus, this study intended to reveal the possible interactions among nutrients, heavy metals, and Chlorella vulgaris (C. vulgaris) in aquaculture water bodies containing fish feed and sediment. The analyses showed that consistent with the composition of heavy metals in fish feed, manganese (Mn) and zinc (Zn) accounted for the highest proportions (68-78%) of heavy metals in sediment. Meanwhile, sediment in the centre of aquaculture water bodies (S2) contained more heavy metals than those in the perimeter (S1), but the released concentrations and rates (Rrelease) of heavy metals from S1 were higher than those from S2. Moreover, the biomass, growth rate, specific growth rate, and nitrogen and carbon fixation rate of C. vulgaris increased with adding fish feed, whereas superoxide dismutase (SOD) and malondialdehyde (MDA) decreased. In addition, with C. vulgaris, influenced by the release process from sediment and the uptake by C. vulgaris, the concentration and Rrelease of Mn, Pb, Cu, Mn, Cr and Cd from sediments coexisting with fish feed in water first increased and then decreased in general. The C. vulgaris biomass was significantly negatively related to Mn, Pb, Cu, Ni, Cr, and Cd and PO43-P (P < 0.05), which was caused by the uptake of C. vulgaris and indicated that C. vulgaris biomass is easily affected by these factors. Accordingly, the input of residual fish feed and sediment should be controlled.


Chlorella vulgaris , Metals, Heavy , Water Pollutants, Chemical , Animals , Geologic Sediments/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Ecosystem , Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Aquaculture , Fishes , Water/analysis , Manganese/analysis , Nutrients , Risk Assessment
16.
Sci Total Environ ; 858(Pt 2): 159894, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36336050

Single-cell studies can help to understand individual differences and obtain atypical cellular characteristics in view of cellular heterogeneity. Herein, the accumulation of mercury (Hg) in single algae cells was studied by droplet chip-time resolved inductively coupled plasma mass spectrometry analytical system, and the relation of Hg accumulation to the physiological responses of algae cell was explored. When low concentrations of Hg2+ (5-20 µg/L) were used in the exposure experiment, the content of Hg in single cells increased in first 2 h, then decreased with further increase of exposure time to 96 h, probably due to the growth dilution effect of the algae. When exposed to 30 µg/L Hg2+, the uptake of Hg by individual cells increased over time, which was associated with increased cell membrane permeability. The exposure to Hg2+ (5-30 µg/L) inhibited the growth of algae in a concentration-dependent manner and serious growth inhibition occurred under the exposure concentration of 30 µg/L. While the exposure concentration was lower than 20 µg/L, algal cells exhibited a recover tendency due to the self-protection mechanism of algal cells. Bivariate results showed that intracellular Hg accumulation was significantly negatively correlated with cells growth in terms of OD680, photosynthetic pigments, Fv/Fm and PIabs. On the contrast, reactive oxygen species content, superoxide dismutase activity, and cell membrane permeability were significantly positively correlated with the accumulation of intracellular Hg. These results are helpful to further understand the toxic effect of Hg on algae.


Mercury , Microcystis , Mercury/metabolism , Photosynthesis , Reactive Oxygen Species/metabolism
17.
Article En | MEDLINE | ID: mdl-36231245

Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.


Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Child , China , Coal/analysis , Ecosystem , Environmental Monitoring/methods , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
18.
Mar Drugs ; 20(8)2022 Aug 14.
Article En | MEDLINE | ID: mdl-36005522

Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of Euglena pisciformis AEW501 for paramylon production under mixotrophic cultivation. The results showed that the optimum mixotrophic conditions were 20 °C, pH 7.0, and 63 µmol photons m-2∙s-1, and the concentrations of sodium acetate and diammonium hydrogen phosphate were 0.98 g L-1 and 0.79 g L-1, respectively. The maximal biomass and paramylon content were 0.72 g L-1 and 71.39% of dry weight. The algal powder contained more than 16 amino acids, 6 vitamins, and 10 unsaturated fatty acids under the optimal cultivation. E. pisciformis paramylon was pure ß-1,3-glucan-type polysaccharide (the purity was up to 99.13 ± 0.61%) composed of linear glucose chains linked together by ß-1,3-glycosidic bonds. These findings present a valuable basis for the industrial exploitation of paramylon with E. pisciformis AEW501.


Euglena gracilis , Euglena , Microalgae , Euglena gracilis/metabolism , Glucans/metabolism , Microalgae/metabolism
19.
J Environ Manage ; 318: 115542, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35763998

Knowledge of phytoplankton limiting factors is essential for cost-efficient lake eutrophication management. Herein, we propose a statistical framework to explore site-specific phytoplankton limiting factors and their dependence on water depth (WD) in 54 lakes in the Chinese Eastern Plains ecoregion. First, the maximal chlorophyll a (Chla) response to total N (TN) or P (TP), representing a region-specific "standard" model where phytoplankton were primarily N- or P-limited, was quantified using a 95% quantile regression. Second, site-specific limiting factors were identified using analogical residual analysis. N- or P-limitation was inferred if FractionTN (i.e. fraction of Chla observed and predicted by the "standard" model for a given TN) > 0.95 or FractionTP >0.95; if both FractionTN and FractionTP <0.95 in a specific environmental condition (e.g. high non-algal turbidity), light limitation was suggested. As a result, 5%, 7%, 4%, 36%, 16%, 2%, and 30% of the sampling sites were limited by N, P, N+P, light availability, rapid flushing, abundant macrophytes, and unmeasured factors, respectively. Bloom control suggestions in the short run are proposed considering these actual limiting factors. Furthermore, the maximal FractionTN or FractionTP response to WD was explored, reflecting the effect of WD on FractionTN (or FractionTP) without significant confounders. The results indicated that phytoplankton in the studied freshwaters would be potentially light-limited, N-limited, N+P-co-limited, or P-limited depending on WD (<1.8, 1.8-2.1, 2.1-5.2, or >5.2 m, respectively), because N will gradually become surplus with increasing WD, while at very shallow depths, strong sediment re-suspension induces light limitation. This finding implies that long-term nutrient management strategies in the studied freshwaters that have WDs of 0-2.1, 2.1-5.2, and >5.2 m can entail control of N, N+P, and P, respectively. This study provides essential information for formulating context-dependent bloom control for lakes in our study area and serves as a valuable reference for developing a cost-efficient eutrophication management framework for other regions.


Cyanobacteria , Lakes , China , Chlorophyll A , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton , Water
20.
J Hazard Mater ; 428: 128276, 2022 04 15.
Article En | MEDLINE | ID: mdl-35051775

The critical role of nitrogen in the global proliferation of cyanobacterial blooms is arousing increasing attention. However, the mechanism underlying the algal responses to differential nitrogen forms remains unclarified. The physiological and transcriptomic changes of Microcystis aeruginosa supplied with different nitrogen forms (nitrate and ammonium) were highlighted in this study. The results indicated that ammonium behaves better in stimulating the initial growth in N-limited cells than nitrate. However, a concomitant side effect is that cellular growth and photosynthesis decreased due to photosystem II damage induced by excess absorbed light energy under 10 mg L-1 ammonium. By contrast, adequate nitrate supply favored more efficient photosynthesis, higher biomass yield and microcystin quotas than ammonium. Depending on the supplied nitrogen form, different transcriptomic patterns were observed in M. aeruginosa. Under nitrate, the upregulation of genes involved in Arg biosynthesis, ornithine-urea cycle and photosynthesis increased nitrogen storage and cellular growth, while genes involved in cyclic electron flow around photosystem I and CO2-concentrating mechanism were heightened to dissipate excess energy under high ammonium. These insights provided important clues for understanding the physiological and molecular effects of available nitrogen forms on the frequent outbreaks of cyanobacteria.


Ammonium Compounds , Cyanobacteria , Microcystis , Ammonium Compounds/toxicity , Cyanobacteria/metabolism , Microcystins/metabolism , Microcystis/genetics , Microcystis/metabolism , Nitrogen , Photosynthesis/genetics , Transcriptome
...