Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Commun Biol ; 7(1): 751, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902322

RESUMEN

Ferroptosis is a recently discovered form of cell death that plays an important role in tumor growth and holds promise as a target for antitumor therapy. However, evidence in the regulation of ferroptosis in lung adenocarcinoma (LUAD) remains elusive. Here, we show that retinoic acid receptor alpha (RARA) is upregulated with the treatment of ferroptosis inducers (FINs). Pharmacological activation of RARA increases the resistance of LUAD to ferroptosis according to cell viability and lipid peroxidation assays, while RARA inhibitor or knockdown (KD) does the opposite. Through transcriptome sequencing in RARA-KD cells and chromatin immunoprecipitation (CHIP)-Seq data, we identify thioredoxin (TXN) and protein phosphatase 1 F (PPM1F) as downstream targets of RARA, both of which inhibit ferroptosis. We confirm that RARA binds to the promotor region of TXN and PPM1F and promotes their transcription by CHIP-qPCR and dual-luciferase assays. Overexpression of TXN and PPM1F reverses the effects of RARA knockdown on ferroptosis in vitro and vivo. Clinically, RARA knockdown or inhibitor increases cells' sensitivity to pemetrexed and cisplatin (CDDP). Immunohistochemistry (IHC) of LUAD from our cohort shows the same expression tendency of RARA and the downstream targets. Our study uncovers that RARA inhibits ferroptosis in LUAD by promoting TXN and PPM1F, and inhibiting RARA-TXN/PPM1F axis represents a promising strategy for improving the efficacy of FINs or chemotherapy in the treatment of LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Tiorredoxinas , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Femenino , Masculino
2.
Commun Biol ; 7(1): 680, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831092

RESUMEN

Ferroptosis, a type of iron-dependent non-apoptotic cell death, plays a vital role in both tumor proliferation and resistance to chemotherapy. Here, our study demonstrates that MAX's Next Tango (MNT), by involving itself in the spermidine/spermine N1-acetyltransferase 1 (SAT1)-related ferroptosis pathway, promotes the proliferation of lung adenocarcinoma (LUAD) cells and diminishes their sensitivity to chemotherapy. Initially, an RNA-sequence screen of LUAD cells treated with ferroptosis inducers (FINs) reveals a significant increase in MNT expression, suggesting a potential link between MNT and ferroptosis. Overexpression of MNT in LUAD cells hinders changes associated with ferroptosis. Moreover, the upregulation of MNT promotes cell proliferation and suppresses chemotherapy sensitivity, while the knockdown of MNT has the opposite effect. Through the intersection of ChIP-Seq and ferroptosis-associated gene sets, and validation by qPCR and western blot, SAT1 is identified as a potential target of MNT. Subsequently, we demonstrate that MNT binds to the promoter sequence of SAT1 and suppresses its transcription by ChIP-qPCR and dual luciferase assays. Restoration of SAT1 levels antagonizes the efficacy of MNT to inhibit ferroptosis and chemosensitivity and promote cell growth in vitro as well as in vivo. In the clinical context, MNT expression is elevated in LUAD and is inversely connected with SAT1 expression. High MNT expression is also associated with poor patient survival. Our research reveals that MNT inhibits ferroptosis, and impairing chemotherapy effectiveness of LUAD.


Asunto(s)
Acetiltransferasas , Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Ratones , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones Endogámicos BALB C , Masculino
3.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504107

RESUMEN

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Neoplasias , Humanos , Poliaminas/metabolismo , Ferroptosis/genética , Peróxido de Hidrógeno , Línea Celular Tumoral , Arginina , Neoplasias/genética
4.
Cell Rep ; 43(2): 113771, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38335093

RESUMEN

EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.


Asunto(s)
Acrilamidas , Adenocarcinoma del Pulmón , Compuestos de Anilina , Indoles , Neoplasias Pulmonares , Pirimidinas , Animales , Humanos , Factores de Transcripción/genética , Neoplasia Residual , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Proteínas de Unión al ADN
5.
Drug Resist Updat ; 73: 101057, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266355

RESUMEN

AIMS: Lung cancer is the leading cause of cancer mortality and lung adenocarcinoma (LUAD) accounts for more than half of all lung cancer cases. Tumor elimination is mostly hindered by drug resistance and the mechanisms remain to be explored in LUAD. METHODS: CRISPR screens in cell and murine models and single-cell RNA sequencing were conducted, which identified MAF bZIP transcription factor F (MAFF) as a critical factor regulating tumor growth and treatment resistance in LUAD. RNA and ChIP sequencing analyses were performed for transcriptional target expression and specific binding sites of MAFF. Functions of MAFF in inhibiting tumor growth and promoting cisplatin or irradiation efficacy were investigated using cellular and xenograft models. RESULTS: Patients with lung adenocarcinoma and reduced MAFF expression had worse clinical outcomes. MAFF inhibited tumor cell proliferation by regulating the expression of SLC7A11, CDK6, and CDKN2C, promoting ferroptosis and preventing cell cycle progression from G1 to S. MAFF also conferred tumor cells vulnerable to cisplatin-based or ionizing radiation treatments. MAFF reduction was a final event in the acquisition of cisplatin resistance of LUAD cells. The intracellular cAMP/PKA/CREB1 pathway upregulated MAFF in response to cisplatin-based or ionizing radiation treatments. CONCLUSIONS: MAFF suppresses tumor growth, and pharmacological agonists targeting MAFF may improve cisplatin or irradiation therapies for lung adenocarcinoma patients.


Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Humanos , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ferroptosis/genética , Línea Celular Tumoral , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Proliferación Celular , Ciclo Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/uso terapéutico , Factor de Transcripción MafF
6.
Cancer Lett ; 581: 216497, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38008395

RESUMEN

Metformin's effect on tumor treatment was complex, because it significantly reduced cancer cell proliferation in vitro, but made no difference in prognosis in several clinical cohorts. Our transcriptome sequencing results revealed that tumor-associated macrophage (TAM) infiltration significantly increased in active lung adenocarcinoma (LUAD) patients with long-term metformin use. We further identified that the tumor suppressive effect of metformin was more significant in mice after the depletion of macrophages, suggesting that TAMs might play an important role in metformin's effects in LUAD. Combining 10X Genomics single-cell sequencing of tumor samples, transcriptome sequencing of metformin-treated TAMs, and the ChIP-Seq data of the Encode database, we identified and validated that metformin significantly increased the expression and secretion of S100A9 of TAMs through AMPK-CEBP/ß pathway. For the downstream, S100A9 binds to RAGE receptors on the surface of LUAD cells, and then activates the NF-κB pathway to promote EMT and progression of LUAD, counteracting the inhibitory effect of metformin on LUAD cells. In cell-derived xenograft models (CDX) and patient-derived xenograft models (PDX) models, our results showed that neutralizing antibodies targeting TAM-secreted S100A9 effectively enhanced the tumor suppressive effect of metformin in treating LUAD. Our results will enable us to better comprehend the complex role of metformin in LUAD, and advance its clinical application in cancer treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Metformina , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Calgranulina B/genética , Modelos Animales de Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Pronóstico , Macrófagos Asociados a Tumores/metabolismo
7.
Respir Res ; 24(1): 277, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957645

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and lipid peroxidation. The molecular mechanisms underlying ferroptosis regulation in non-small cell lung cancer (NSCLC) are poorly understood. In this study, we found that protein kinase A (PKA) inhibition enhanced ferroptosis susceptibility in NSCLC cells, as evidenced by reduced cell viability and increased lipid peroxidation. We further identified cAMP-responsive element protein 1 (CREB1), a transcription factor and a substrate of PKA, as a key regulator of ferroptosis. Knockdown of CREB1 sensitized NSCLC cells to ferroptosis inducers (FINs) and abolished the effects of PKA inhibitor and agonist, revealing the pivotal role of CREB1 in ferroptosis regulation. Using a high-throughput screening approach and subsequent validation by chromatin immunoprecipitation (ChIP) and dual-luciferase assays, we discovered that CREB1 transcriptionally activated stearoyl-CoA desaturase (SCD), an enzyme that catalyzes the conversion of saturated fatty acids to monounsaturated fatty acids. SCD conferred ferroptosis resistance by decreasing the availability of polyunsaturated fatty acids for lipid peroxidation, and its overexpression rescued the effect of CREB1 knockdown on ferroptosis in vitro. Besides, CREB1 knockdown suppressed xenograft tumor growth in the presence of Imidazole Ketone Erastin (IKE), a potent FIN, and this effect was reversed by SCD. Finally, we showed that high expression of CREB1 was associated with poor prognosis in NSCLC patients from public datasets and our institution. Collectively, this study illustrates the effect of PKA/CREB1/SCD axis in regulating ferroptosis of NSCLC, targeting this pathway may provide new strategies for treating NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Ferroptosis/genética , Peroxidación de Lípido , Neoplasias Pulmonares/genética
8.
Biomed Pharmacother ; 168: 115711, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879213

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the most common pathological type of esophageal cancer in China, accounting for more than 90 %. Most patients were diagnosed with advanced-stage ESCC, for whom new adjuvant therapy is recommended. Therefore, it is urgent to explore new therapeutic targets for ESCC. Ferroptosis, a newly discovered iron-dependent programmed cell death, has been shown to play an important role in carcinogenesis by many studies. This study explored the effect of Polo like kinase 1 (PLK1) on chemoradiotherapy sensitivity of ESCC through ferroptosis METHODS: In this study, we knocked out the expression of PLK1 (PLK1-KO) in ESCC cell lines (KYSE150 and ECA109) with CRISPR/CAS9. The effects of PLK1-knock out on G6PD, the rate-limiting enzyme of pentose phosphate pathway (PPP), and downstream NADPH and GSH were explored. The lipid peroxidation was observed by flow cytometry, and the changes in mitochondria were observed by transmission electron microscopy. Next, through the CCK-8 assay and clone formation assay, the sensitivity to cobalt 60 rays, paclitaxel, and cisplatin were assessed after PLK1-knock out, and the nude mouse tumorigenesis experiment further verified it. The regulation of transcription factor YY1 on PLK1 was evaluated by dual luciferase reporter assay. The expression and correlation of PLK1 and YY1, and their impact on prognosis were analyzed in more than 300 ESCC cases from the GEO database and our center. Finally, the above results were further proved by single-cell sequencing. RESULTS: After PLK1 knockout, the expression of G6PD dimer and the level of NADPH and GSH in KYSE150 and ECA109 cells significantly decreased. Accordingly, lipid peroxidation increased, mitochondria became smaller, membrane density increased, and ferroptosis was more likely to occur. However, with the stimulation of exogenous GSH (10 mM), there was no significant difference in lipid peroxidation and ferroptosis between the PLK1-KO group and the control group. After ionizing radiation, the PLK1-KO group had higher lipid peroxidation ratio, more cell death, and was more sensitive to radiation, while exogenous GSH (10 mM) could eliminate this difference. Similar results could also be observed when receiving paclitaxel combined with cisplatin and chemoradiotherapy. The expression of PLK1, G6PD dimer, and the level of NADPH and GSH in KYSE150, ECA109, and 293 T cells stably transfected with YY1-shRNAs significantly decreased, and the cells were more sensitive to radiotherapy and chemotherapy. ESCC patients from the GEO database and our center, YY1 and PLK1 expression were significantly positively-correlated, and the survival of patients with high expression of PLK1 was significantly shorter. Further analysis of single-cell sequencing specimens of ESCC in our center confirmed the above results. CONCLUSION: In ESCC, down-regulation of PLK1 can inhibit PPP, and reduce the level of NADPH and GSH, thereby promoting ferroptosis and improving their sensitivity to radiotherapy and chemotherapy. Transcription factor YY1 has a positive regulatory effect on PLK1, and their expressions were positively correlated. PLK1 may be a target for predicting and enhancing the chemoradiotherapy sensitivity of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Quimioradioterapia , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/patología , NADP/metabolismo , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Vía de Pentosa Fosfato , Factor de Transcripción YY1/metabolismo , Quinasa Tipo Polo 1
9.
Heliyon ; 9(8): e18132, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529341

RESUMEN

Background: N6-methyladenosine (m6A) RNA methylation plays a crucial role in important genomic processes in a variety of malignancies. However, the characterization of m6A with infiltrating immune cells in the tumor microenvironment (TME) in esophageal squamous carcinoma (ESCC) remains unknown. Methods: The single-cell transcriptome data from five ESCC patients in our hospital were analyzed, and TME clusters associated with prognosis and immune checkpoint genes were investigated. Cell isolation and qPCR were conducted to validate the gene characterization in different cells. Results: According to distinct biological processes and marker genes, macrophages, T cells, and B cells clustered into three to four different subgroups. In addition, we demonstrated that m6A RNA methylation regulators were strongly related to the clinical and biological features of ESCC. Analysis of transcriptome data revealed that m6A-mediated TME cell subsets had high predictive value and showed a close relationship with immune checkpoint genes. The validation results from qPCR demonstrated the characteristics of essential genes. CellChat analysis revealed that RNA from TME cells m6A methylation-associated cell subtypes had substantial and diversified interactions with cancer cells. Further investigation revealed that MIF- (CD74+CXCR4) and MIF- (CD74+CD44) ligand-receptor pairings facilitated communication between m6A-associated subtypes of TME cells and cancer cells. Conclusion: Overall, our study demonstrated for the first time the function of m6A methylation-mediated intercellular communication in the microenvironment of tumors in controlling tumor development and anti-tumor immune regulation in ESCC.

11.
Cell Biosci ; 13(1): 103, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291676

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NACT) becomes the first-line option for advanced tumors, while patients who are not sensitive to it may not benefit. Therefore, it is important to screen patients suitable for NACT. METHODS: Single-cell data of lung adenocarcinoma (LUAD) and esophageal squamous carcinoma (ESCC) before and after cisplatin-containing (CDDP) NACT and cisplatin IC50 data of tumor cell lines were analyzed to establish a CDDP neoadjuvant chemotherapy score (NCS). Differential analysis, GO, KEGG, GSVA and logistic regression models were performed by R. Survival analysis were applied to public databases. siRNA knockdown in A549, PC9, TE1 cell lines, qRT-PCR, western-blot, cck8 and EdU experiments were used for further verification in vitro. RESULTS: 485 genes were expressed differentially in tumor cells before and after neoadjuvant treatment for LUAD and ESCC. After combining the CDDP-associated genes, 12 genes, CAV2, PHLDA1, DUSP23, VDAC3, DSG2, SPINT2, SPATS2L, IGFBP3, CD9, ALCAM, PRSS23, PERP, were obtained and formed the NCS score. The higher the score, the more sensitive the patients were to CDDP-NACT. The NCS divided LUAD and ESCC into two groups. Based on differentially expressed genes, a model was constructed to predict the high and low NCS. CAV2, PHLDA1, ALCAM, CD9, IGBP3 and VDAC3 were significantly associated with prognosis. Finally, we demonstrated that the knockdown of CAV2, PHLDA1 and VDAC3 in A549, PC9 and TE1 significantly increased the sensitivity to cisplatin. CONCLUSIONS: NCS scores and related predictive models for CDDP-NACT were developed and validated to assist in selecting patients who might benefit from it.

12.
PeerJ ; 11: e15377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180584

RESUMEN

Background: Lung adenocarcinoma is one of the most prevalent cancers while ferroptosis is crucial for cancer therapies. This study aims to investigate the function and mechanism of hepatic nuclear factor 4 alpha (HNF4A) in lung adenocarcinomas' ferroptosis. Materials and Methods: HNF4A expression in ferroptotic A549 cells was detected. Then HNF4A was knocked down in A549 cells while overexpressed in H23 cells. Cells with changed HNF4A expression were tested for cytotoxicity and the level of cellular lipid peroxidation. The expression of cytochrome P450 oxidoreductase (POR) expression was examined after HNF4A was knocked down or overexpressed. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and dual-luciferase assays were performed to validate the regulation of HNF4A on POR. Finally, POR was restored in HNF4A-altered cells to check whether it restores the effect of HNF4A on ferroptosis. Results: We found that HNF4A expression significantly decreased in the ferroptosis of A549 cells, and this change can be blocked by deferoxamine, an inhibitor of ferroptosis. Knockdown of HNF4A inhibited ferroptosis in A549 cells while overexpression of HNF4A promoted ferroptosis in H23 cells. We identified a key ferroptosis-related gene, POR serves as a potential target gene of HNF4A, whose expression was significantly changed in lung adenocarcinoma cells knocking down or overexpressing HNF4A. We demonstrated that HNF4A was bound to the POR's promoter to enhance POR expression, and identified the binding sites via ChIP-qPCR and luciferase assays. Restoration of POR expression blocked the promoting effect of HNF4A on ferroptosis in lung adenocarcinoma. Conclusion: HNF4A promotes POR expression through binding to the POR's promoter, and subsequently promotes the ferroptosis of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Ferroptosis , Neoplasias Pulmonares , Humanos , Ferroptosis/genética , Activación Transcripcional , Sistema Enzimático del Citocromo P-450/metabolismo , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Luciferasas/metabolismo
13.
Cancer Res ; 83(14): 2387-2404, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37184371

RESUMEN

Ferroptosis is an iron-dependent form of regulated cell death induced by the lethal overload of lipid peroxides in cellular membranes. In recent years, modulating ferroptosis has gained attention as a potential therapeutic approach for tumor suppression. In the current study, retinol saturase (RETSAT) was identified as a significant ferroptosis mediator using a publicly accessible CRISPR/Cas9 screening dataset. RETSAT depletion protected tumor cells from lipid peroxidation and subsequent cell death triggered by various ferroptosis inducers. Furthermore, exogenous supplementation with retinoids, including retinol (the substrate of RETSAT) and its derivatives retinal and retinoic acid, also suppressed ferroptosis, whereas the product of RETSAT, 13, 14-dihydroretinol, failed to do so. As effective radical-trapping antioxidant, retinoids protected the lipid membrane from autoxidation and subsequent fragmentation, thus terminating the cascade of ferroptosis. Pseudotargeted lipidomic analysis identified an association between retinoid regulation of ferroptosis and lipid metabolism. Retinoic acid, but not 13, 14-dihydroretinoic acid, interacted with its nuclear receptor and activated transcription of stearoyl-CoA desaturase, which introduces the first double bond into saturated fatty acid and thus catalyzes the generation of monounsaturated fatty acid, a known ferroptosis suppressor. Therefore, RETSAT promotes ferroptosis by transforming retinol to 13, 14-dihydroretinol, thereby turning a strong anti-ferroptosis regulator into a relatively weak one. SIGNIFICANCE: Retinoids have ferroptosis-protective properties and can be metabolized by RETSAT to promote ferroptosis, suggesting the possibility of targeting retinoid metabolism in cancer as a treatment strategy to trigger ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Vitamina A/metabolismo , Retinoides , Tretinoina/farmacología , Tretinoina/metabolismo , Metabolismo de los Lípidos , Neoplasias/genética
14.
PeerJ ; 11: e14996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923501

RESUMEN

Background: Lung adenocarcinoma is one of the most common tumors, and cisplatin is frequently used in treating lung adenocarcinoma patients. This study aimed to look into the roles and mechanisms of HNF4G in cisplatin resistance of lung adenocarcinoma. Materials & Methods: Cisplatin resistance and gene expression data of 542 cell lines from the CTRP and CCLE databases were analyzed. HNF4G expression was detected in the lung adenocarcinoma cell lines after treatment with various concentrations of cisplatin. Cisplatin sensitivity curves were detected in cells that overexpressed or knocked down HNF4G. The ChIP-Seq data were then analyzed to identify the targets of HNF4G involved in cisplatin resistance. Expression and phosphorylation of the MAPK6/Akt pathway were detected after HNF4G was overexpressed or knocked down. Finally, ChIP-qPCR and dual-luciferase assays were used to investigate the regulation of HNF4G on MAPK6. Results: In cell lines, high expression of HNF4G was significantly positively correlated with cisplatin resistance, and lung adenocarcinoma patients who had high HNF4G expression had a poor prognosis. Cisplatin treatment increased HNF4G expression, and overexpression of HNF4G significantly increased the resistance to cisplatin in A549 and HCC827 cells, whereas knockdown of HNF4G had the opposite effect. HNF4G overexpression increased MAPK6 expression and activated the MAPK6/Akt pathway, while an Akt inhibitor reduced the effects of HNF4G on cisplatin resistance. HNF4G bound to the MAPK6 promoter region, promoting MAPK6 expression, according to ChIP-qPCR and luciferase assays. Conclusion: By binding to the MAPK6 promoter region, HNF4G promotes MAPK6 expression and subsequent Akt phosphorylation, resulting in resistance to cisplatin in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Factor Nuclear 4 del Hepatocito/genética
15.
J Immunol Res ; 2023: 4987832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793588

RESUMEN

Background: This study identified the expression and prognosis significance of secretory or membrane-associated proteins in KRAS lung adenocarcinoma (LUAD) and depicted the characteristics between the immune cell infiltration and the expression of these genes. Methods: Gene expression data of LUAD samples (n = 563) were accessed from The Cancer Genome Atlas (TCGA). The expression of secretory or membrane-associated proteins was compared among the KRAS-mutant, wild-type, and normal groups, as well as the subgroup of the KRAS-mutant group. We identified the survival-related differentially expressed secretory or membrane-associated proteins and conducted the functional enrichment analysis. Then, the characterization and association between their expression and the 24 immune cell subsets were investigated. We also constructed a scoring model to predict KRAS mutation by LASSO and logistic regression analysis. Results: Secretory or membrane-associated genes with differential expression (n = 74) across three groups (137 KRAS LUAD, 368 wild-type LUAD, and 58 normal groups) were identified, and the results of GO and KEGG indicated that they were strongly associated with immune cell infiltrations. Among them, ten genes were significantly related to the survival of patients with KRAS LUAD. The expression of IL37, KIF2, INSR, and AQP3 had the most significant correlations with immune cell infiltration. In addition, eight DEGs from the KRAS subgroups were highly correlated with immune infiltrations, especially TNFSF13B. Using LASSO-logistic regression, a KRAS mutation prediction model based on the 74 differentially expressed secretory or membrane-associated genes was built, and the accuracy was 0.79. Conclusion: The research investigated the relationship between the expression of KRAS-related secretory or membrane-associated proteins in LUAD patients with prognostic prediction and immune infiltration characterization. Our study demonstrated that secretory or membrane-associated genes were closely associated with the survival of KRAS LUAD patients and were strongly correlated to immune cell infiltration.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/genética , Transporte Biológico , Mutación , Neoplasias Pulmonares/genética , Pronóstico , Interleucina-1
16.
Clin Exp Med ; 23(3): 591-606, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35829844

RESUMEN

Retinoids are essential nutrients for human beings. Among them, all-trans retinoic acid (ATRA), considered one of the most active metabolites, plays important roles in multiple biological processes. ATRA regulates the transcription of target genes by interacting with nuclear receptors bonded to retinoic acid response elements (RAREs). Besides its differentiation-inducing effect in the treatment of acute promyelocytic leukemia and some solid tumor types, its immunoregulatory role in tumor microenvironment (TME) has attracted considerable attention. ATRA not only substantially abrogates the immunosuppressive effect of tumor-infiltrating myeloid-derived suppressor cells but also activates the anti-tumor effect of CD8 + T cells. Notably, the combination of ATRA with other therapeutic approaches, including immune checkpoint inhibitors (ICIs), tumor vaccines, and chemotherapy, has been extensively investigated in a variety of tumor models and clinical trials. In this review, we summarize the current understanding of the role of ATRA in cancer immunology and immunotherapy, dissect the underlying mechanisms of ATRA-mediated activation or differentiation of different types of immune cells, and explore the potential clinical significance of ATRA-based cancer therapy.


Asunto(s)
Neoplasias , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/uso terapéutico , Microambiente Tumoral , Tretinoina/uso terapéutico , Retinoides/farmacología , Retinoides/uso terapéutico , Diferenciación Celular/fisiología , Neoplasias/tratamiento farmacológico
17.
Mol Ther Nucleic Acids ; 28: 366-386, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35505963

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most common malignancies worldwide. Combination chemotherapy with cisplatin (CDDP) plus pemetrexed (PEM) remains the predominant therapeutic regimen; however, chemoresistance greatly limits its curative potential. Here, through CRISPR-Cas9 screening, we identified miR-6077 as a key driver of CDDP/PEM resistance in LUAD. Functional experiments verified that ectopic overexpression of miR-6077 desensitized LUAD cells to CDDP/PEM in both cell lines and patient-derived xenograft models. Through RNA sequencing in cells and single-cell sequencing of samples from patients with CDDP/PEM treatments, we observed CDDP/PEM-induced upregulation of CDKN1A and KEAP1, which in turn activated cell-cycle arrest and ferroptosis, respectively, thus leading to cell death. Through miRNA pull-down, we identified and validated that miR-6077 targets CDKN1A and KEAP1. Furthermore, we demonstrated that miR-6077 protects LUAD cells from cell death induced by CDDP/PEM via CDKN1A-CDK1-mediated cell-cycle arrest and KEAP1-NRF2-SLC7A11/NQO1-mediated ferroptosis, thus resulting in chemoresistance in multiple LUAD cells both in vitro and in vivo. Moreover, we found that GMDS-AS1 and LINC01128 sensitized LUAD cells to CDDP/PEM by sponging miR-6077. Collectively, these results imply the critical role of miR-6077 in LUAD's sensitivity to CDDP/PEM, thus providing a novel therapeutic strategy for overcoming chemoresistance in clinical practice.

18.
J Immunol Res ; 2022: 4355386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35497874

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Tolerancia Inmunológica , Neoplasias Pulmonares/terapia , Linfocitos T Reguladores , Microambiente Tumoral
19.
J Cancer ; 13(5): 1611-1622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371305

RESUMEN

Background: The role of ferroptosis in esophageal squamous cell carcinoma (ESCC) is still unclear. Methods: The association of iron metabolism and ferroptosis-related genes with the prognosis, copy number variation (CNV), TMB, and immune cell infiltration of ESCC was explored using data from the GEO and TCGA database and validated by immunofluorescence in 112 ESCC patients from our center. The potential anti-cancer drugs and compounds from the GDSC and the Connectivity Map database were also screened. Results: A total of 117 iron metabolism and ferroptosis-related genes were identified. We found the expressions of PRNP, SLC3A2, SLC39A8, and SLC39A14 negatively related to the prognosis of ESCC patients, while ATP6V0A1 and LCN2 were opposite, which was validated in 112 ESCC samples from our center. And a prognostic signature was constructed based on their expressions and Cox regression coefficient (ß). The low-score group exhibited a significantly worse OS. Besides, analysis of 179 ESCC samples from GSE53625 revealed that patients of poorly differentiation, more than 60 years, T4 stage, advanced N stage, advanced stage, and adjuvant therapy also exhibited a significantly shorter OS, based on which a nomogram to predict the OS was established. Moreover, the low-score group exhibited significantly higher CNV and TMB and more frequent mutations of TP53, MUC16, and NOTCH1. Higher proportion of Macrophages M2, and lower proportion of T cells follicular helper were observed in the low-score group. We discovered that AZD7762, Sunitinib, Cytarabine, Docetaxel, Vinblastine, and Elesclomol exhibited lower IC50 in the low-score group. And 20 potential compounds were identified from the CMap database. Conclusions: Six iron metabolism and ferroptosis-related genes were associated with the prognosis, CNV, TMB, and immune cell infiltration of ESCC. Some potential anti-cancer drugs and compounds may be helpful for OS.

20.
J Transl Med ; 20(1): 171, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410350

RESUMEN

OBJECTIVES: Platinum-based chemotherapies are currently the first-line treatment of non-small cell lung cancer. This study will improve our understanding of the causes of resistance to cisplatin, especially in lung adenocarcinoma (LUAD) and provide a reference for therapeutic decisions in clinical practice. METHODS: Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA) and Zhongshan hospital affiliated to Fudan University (zs-cohort) were used to identify the multi-omics differences related to platinum chemotherapy. Cisplatin-resistant mRNA and miRNA models were constructed by Logistic regression, classification and regression tree and C4.5 decision tree classification algorithm with previous feature selection performed via least absolute shrinkage and selection operator (LASSO). qRT-PCR and western-blotting of A549 and H358 cells, as well as single-cell Seq data of tumor samples were applied to verify the tendency of certain genes. RESULTS: 661 cell lines were divided into three groups according to the IC50 value of cisplatin, and the top 1/3 (220) with a small IC50 value were defined as the sensitive group while the last 1/3 (220) were enrolled in the insensitive group. TP53 was the most common mutation in the insensitive group, in contrast to TTN in the sensitive group. 1348 mRNA, 80 miRNA, and 15 metabolites were differentially expressed between 2 groups (P < 0.05). According to the LASSO penalized logistic modeling, 6 of the 1348 mRNAs, FOXA2, BATF3, SIX1, HOXA1, ZBTB38, IRF5, were selected as the associated features with cisplatin resistance and for the contribution of predictive mRNA model (all of adjusted P-values < 0.001). Three of 6 (BATF3, IRF5, ZBTB38) genes were finally verified in cell level and patients in zs-cohort. CONCLUSIONS: Somatic mutations, mRNA expressions, miRNA expressions, metabolites and methylation were related to the resistance of cisplatin. The models we created could help in the prediction of the reaction and prognosis of patients given platinum-based chemotherapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas de Homeodominio , Humanos , Factores Reguladores del Interferón , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Aprendizaje Automático , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...