Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Phys Condens Matter ; 32(2): 025503, 2020 Jan 09.
Article En | MEDLINE | ID: mdl-31536970

Angular-dependent de Haas-van Alphen measurements allow the mapping of Fermi surfaces in great detail with high accuracy. Density functional electronic-structure calculations can be carried out with high precision, but depend crucially on the used structural information and the applied calculational approximations. We report in a detailed study the sensitivity of the calculated electronic band structure of the 122 compound LaFe2P2 on (i) the exact P position in the unit cell, parametrized by a so-called z parameter, and on (ii) the treatment of the La 4f  states. Depending on the chosen exchange and correlation-potential approximation, the calculated z parameter varies slightly and corresponding small but distinctive differences in the calculated band structure and Fermi-surface topology appear. Similarly, topology changes appear when the energy of the mostly unoccupied La 4f  states is corrected regarding their experimentally observed position. The calculated results are compared to experimental de Haas-van Alphen data. Our findings show a high sensitivity of the calculated band structure on the pnictide z position and the need for an accurate experimental determination of this parameter at low temperatures, and a particular need for a sophisticated treatment of the La 4f  states. Thus, this is not only crucial for the special case of LaFe2P2 studied here, but of importance for the precise determination of the band structure of related 122 materials and La containing compounds in general.

2.
Phys Rev Lett ; 122(18): 187201, 2019 May 10.
Article En | MEDLINE | ID: mdl-31144900

Neutron scattering measurements on the pyrochlore magnet Ce_{2}Zr_{2}O_{7} reveal an unusual crystal field splitting of its lowest J=5/2 multiplet, such that its ground-state doublet is composed of m_{J}=±3/2, giving these doublets a dipole-octupole (DO) character with local Ising anisotropy. Its magnetic susceptibility shows weak antiferromagnetic correlations with θ_{CW}=-0.4(2) K, leading to a naive expectation of an all-in, all-out ordered state at low temperatures. Instead, our low-energy inelastic neutron scattering measurements show a dynamic quantum spin ice state, with suppressed scattering near |Q|=0, and no long-range order at low temperatures. This is consistent with recent theory predicting symmetry-enriched U(1) quantum spin liquids for such DO doublets decorating the pyrochlore lattice. Finally, we show that disorder, especially oxidation of powder samples, is important in Ce_{2}Zr_{2}O_{7} and could play an important role in the low-temperature behavior of this material.

3.
Phys Rev Lett ; 108(17): 177204, 2012 Apr 27.
Article En | MEDLINE | ID: mdl-22680903

We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Néel temperature. At 23.6 kbar, the ordered magnetic moments are fully suppressed via a second-order phase transition, and T(N) is zero. Thus, we directly observed the quantum critical point at 23.6 kbar hidden inside the superconducting phase of CeRhSi3.

4.
Phys Rev Lett ; 108(8): 087002, 2012 Feb 24.
Article En | MEDLINE | ID: mdl-22463558

We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn5 with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H is parallel to [100], a single VL orientation is observed, while a 90° reorientation transition is found for H is parallel to [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Γ=2.0±0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H is parallel to [001]. At high fields, above which the upper critical field (H(c2)) becomes a first-order transition, an increased disordering of the VL is observed.

5.
Proc Natl Acad Sci U S A ; 107(21): 9537-40, 2010 May 25.
Article En | MEDLINE | ID: mdl-20457945

The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.

6.
Phys Rev Lett ; 104(12): 127001, 2010 Mar 26.
Article En | MEDLINE | ID: mdl-20366558

We have studied the magnetic order inside the superconducting phase of CeCoIn5 for fields along the [1 0 0] crystallographic direction using neutron diffraction. We find a spin-density wave order with an incommensurate modulation Q=(q,q,1/2) and q=0.45(1), which within our experimental uncertainty is indistinguishable from the spin-density wave found for fields applied along [1 -1 0]. The magnetic order is thus modulated along the lines of nodes of the d{x{2}-y{2}} superconducting order parameter, suggesting that it is driven by the electron nesting along the superconducting line nodes. We postulate that the onset of magnetic order leads to reconstruction of the superconducting gap function and a magnetically induced pair density wave.

7.
Phys Rev Lett ; 101(3): 037001, 2008 Jul 18.
Article En | MEDLINE | ID: mdl-18764281

We studied the effect of impurity on the first order superconducting (SC) transition and the high field-low temperature (HFLT) SC state of CeCoIn5 by measuring the specific heat of CeCo(In1-xCdx)_{5} with x=0.0011, 0.0022, and 0.0033 and CeCo(In1-xHgx)_{5} with x=0.000 16, 0.000 32, and 0.000 48 at temperatures down to 0.1 K and fields up to 14 T. Cd substitution rapidly suppresses the crossover temperature T0, where the SC transition changes from second to first order, to T=0 K with x=0.0022 for H parallel[100], while it remains roughly constant up to x=0.0033 for H parallel[001]. The associated anomaly of the proposed FFLO state in Hg-doped samples is washed out by x=0.000 48, while remaining at the same temperature, indicating high sensitivity of that state to impurities. We interpret these results as supporting the nonmagnetic, possibly FFLO, origin of the HFLT state in CeCoIn5.

8.
Science ; 321(5896): 1652-4, 2008 Sep 19.
Article En | MEDLINE | ID: mdl-18719250

Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn5 adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first-order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum.

9.
Phys Rev Lett ; 100(25): 257004, 2008 Jun 27.
Article En | MEDLINE | ID: mdl-18643696

We present a comprehensive de Haas-van Alphen study on the nonmagnetic borocarbide superconductor LuNi2B2C. The analysis of the angular-dependent effective masses for different bands in combination with full-potential density functional calculations allowed us to determine the mass-enhancement factors, lambda, for the different electronic bands and their wave-vector dependences. Our data clearly show the anisotropic multiband character of the superconductivity in LuNi2B2C.

10.
Phys Rev Lett ; 96(1): 016403, 2006 Jan 13.
Article En | MEDLINE | ID: mdl-16486488

Substituting Eu by Ca in ferromagnetic EuB6 leads to a percolation limited magnetic ordering. We present and discuss magneto-optical data of the Eu(1-x)Ca(x)B6 series, based on measurements of the reflectivity R(omega) from the far infrared up to the ultraviolet, as a function of temperature and magnetic field. Via the Kramers-Kronig transformation of R(omega) we extract the complete absorption spectra of samples with different values of x. The change of the spectral weight in the Drude component by increasing the magnetic field agrees with a scenario based on the double-exchange model, and suggests a crossover from a ferromagnetic metal to a ferromagnetic Anderson insulator upon increasing Ca content at low temperatures.

11.
Phys Rev Lett ; 93(14): 147203, 2004 Oct 01.
Article En | MEDLINE | ID: mdl-15524837

Upon substituting Ca for Eu in the local-moment ferromagnet EuB6, the Curie temperature T(C) decreases substantially with increasing dilution of the magnetic sublattice and is completely suppressed for x

12.
Phys Rev Lett ; 92(6): 067401, 2004 Feb 13.
Article En | MEDLINE | ID: mdl-14995273

We have measured the optical reflectivity R(omega) of Eu0.6Ca0.4B6 as a function of temperature (T) between 1.5 and 300 K and in external magnetic fields (H) up to 7 T. R(omega) increases with decreasing T and increasing H field, but the plasma edge feature does not exhibit the sharp onset and steep slope that is observed in EuB6. The analysis of the H-field dependence of the low-T optical conductivity confirms the previously observed exponential decrease of the electrical resistivity upon increasing bulk magnetization at constant T. The individual exponential magnetization dependences of the plasma frequency and scattering rate are also extracted from the optical data.

13.
Phys Rev Lett ; 91(4): 046401, 2003 Jul 25.
Article En | MEDLINE | ID: mdl-12906679

The phase diagram of FeSi(1-x)Ge(x), obtained from magnetic, thermal, and transport measurements on single crystals, shows a discontinuous transition from Kondo insulator to ferromagnetic metal with x at a critical concentration, x(c) approximately 0.25. The gap of the insulating phase strongly decreases with x. The specific heat gamma coefficient appears to track the density of states of a Kondo insulator. The phase diagram is consistent with an insulator-metal transition induced by a reduction of the hybridization with x in conjunction with disorder on the Si/Ge ligand site.

14.
Phys Rev Lett ; 89(15): 157601, 2002 Oct 07.
Article En | MEDLINE | ID: mdl-12366022

Complementary angle-resolved photoemission and bulk-sensitive k-resolved resonant inelastic x-ray scattering of divalent hexaborides reveal a >1 eV X-point gap between the valence and conduction bands, in contradiction to the band overlap assumed in several models of their novel ferromagnetism. This semiconducting gap implies that carriers detected in transport measurements arise from defects, and the measured location of the bulk Fermi level at the bottom of the conduction band implicates boron vacancies as the origin of the excess electrons. The measured band structure and X-point gap in CaB6 additionally provide a stringent test case for many-body quasiparticle band calculations.

...