Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123597

RESUMEN

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ácido Mevalónico/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Colesterol/metabolismo , Movimiento Celular
2.
J Neurosci ; 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953295

RESUMEN

The N-Methyl-D-aspartate receptors (NMDAR) are key players in both physiological and pathological synaptic plasticity because of their involvement in many aspects of neuronal transmission as well as learning and memory. The contribution in these events of different types of GluN2A-interacting proteins is still unclear. The p140Cap scaffold protein acts as a hub for postsynaptic complexes relevant to psychiatric and neurological disorders and regulates synaptic functions like the stabilization of mature dendritic spine, memory consolidation, long-term potentiation, and depression. Here we demonstrate that p140Cap directly binds the GluN2A subunit of NMDAR and modulates GluN2A-associated molecular network. Indeed, in p140Cap knockout male mice, GluN2A is less associated with PSD95 both in ex vivo synaptosomes and in cultured hippocampal neurons and p140Cap expression in knockout neurons can rescue GluN2A and PSD95 colocalization. p140Cap is crucial in the recruitment of GluN2A-containing NMDARs and, consequently, in regulating NMDARs intrinsic properties. p140Cap is associated to synaptic lipid-raft (LR) and to soluble postsynaptic membranes and GluN2A and PSD95 are less recruited into synaptic LR of p140Cap knockout male mice. g-STED microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters in LR in an activity-dependent fashion. In the synaptic compartment p140Cap influences the association between GluN2A and PSD95 and modulates GluN2A enrichment into LR. Overall, such increase in these membrane domains rich in signalling molecules results in improved signal transduction efficiency.SIGNIFICANT STATEMENTHere we originally show that the adaptor protein p140Cap directly binds the GluN2A subunit of NMDAR and modulates the GluN2A-associated molecular network. Moreover, we show for the first time that p140Cap also associates to synaptic lipid rafts and controls the selective recruitment of GluN2A and PSD95 to this specific compartment. Finally, g-STED microscopy on hippocampal neurons confirmed that p140Cap is required for embedding GluN2A clusters in lipid rafts in an activity-dependent fashion. Overall, our findings provide the molecular and functional dissection of p140Cap as a new active member of a highly dynamic synaptic network involved in memory consolidation, LTP and LTD that are known to be altered in neurological and psychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...