Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
PLoS Genet ; 19(1): e1010592, 2023 01.
Article En | MEDLINE | ID: mdl-36608114

Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.


Meiosis , Crossing Over, Genetic , DNA-Binding Proteins/genetics , Meiosis/genetics , Microtubule-Associated Proteins/genetics , MutL Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Sci Transl Med ; 14(628): eabj7521, 2022 Jan 19.
Article En | MEDLINE | ID: mdl-34698500

The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding factors such as age and comorbidities, true mediators of this condition have remained elusive. We used a multi-omics analysis combined with artificial intelligence in a young patient cohort where major comorbidities were excluded at the onset. The cohort included 47 "critical" (in the intensive care unit under mechanical ventilation) and 25 "non-critical" (in a non-critical care ward) patients with COVID-19 and 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cell proteomics, cytokine profiling, and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were used. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19 and was further confirmed at the transcriptional and protein level and by proteolytic activity. Ex vivo ADAM9 inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of disease severity and a candidate therapeutic target.


COVID-19 , ADAM Proteins , Artificial Intelligence , Humans , Intensive Care Units , Membrane Proteins , Respiration, Artificial , SARS-CoV-2
3.
J Gynecol Obstet Hum Reprod ; 51(2): 102283, 2022 Feb.
Article En | MEDLINE | ID: mdl-34875397

Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers. Despite excellent responses to standard treatment in approximately 70% of patients, most of them will relapse within 5 years of initial treatment and many of them will develop chemotherapy-resistant disease. It is then important to find other means of treatment for these patients such as immunotherapy or targeted therapy. To understand immunotherapy, it is important to explain the dynamic interplay between cancer and the immune system. Compared to traditional tumor therapies, immunotherapy acts primarily on the immune system or the tumor microenvironment but not directly on the tumor cells, and it may also promote synergistic anti-tumor actions as part of a combined treatment. The aim of this narrative review is to provide a basic understanding of immunotherapy the interest of this treatment in EOC, and to present the main ongoing studies that could change patient management in the future.


Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/therapy , Immunotherapy/methods , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Female , Humans , Tumor Microenvironment/immunology
4.
G3 (Bethesda) ; 11(9)2021 09 06.
Article En | MEDLINE | ID: mdl-34544138

Dissecting the genetic basis of complex trait remains a real challenge. The budding yeast Saccharomyces cerevisiae has become a model organism for studying quantitative traits, successfully increasing our knowledge in many aspects. However, the exploration of the genotype-phenotype relationship in non-model yeast species could provide a deeper insight into the genetic basis of complex traits. Here, we have studied this relationship in the Lachancea waltii species which diverged from the S. cerevisiae lineage prior to the whole-genome duplication. By performing linkage mapping analyses in this species, we identified 86 quantitative trait loci (QTL) impacting the growth in a large number of conditions. The distribution of these loci across the genome has revealed two major QTL hotspots. A first hotspot corresponds to a general growth QTL, impacting a wide range of conditions. By contrast, the second hotspot highlighted a trade-off with a disadvantageous allele for drug-free conditions which proved to be advantageous in the presence of several drugs. Finally, a comparison of the detected QTL in L. waltii with those which had been previously identified for the same trait in a closely related species, Lachancea kluyveri was performed. This analysis clearly showed the absence of shared QTL across these species. Altogether, our results represent a first step toward the exploration of the genetic architecture of quantitative trait across different yeast species.


Quantitative Trait Loci , Saccharomycetales , Chromosome Mapping , Dissection , Genetic Linkage , Genotype , Phenotype , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomycetales/genetics
5.
Infect Dis Ther ; 10(3): 1747-1763, 2021 Sep.
Article En | MEDLINE | ID: mdl-34245450

INTRODUCTION: COVID-19 long-haulers, also decribed as having "long-COVID" or post-acute COVID-19 syndrome, represent 10% of COVID-19 patients and remain understudied. METHODS: In this prospective study, we recruited 30 consecutive patients seeking medical help for persistent symptoms (> 30 days) attributed to COVID-19. All reported a viral illness compatible with COVID-19. The patients underwent a multi-modal evaluation, including clinical, psychologic, virologic and specific immunologic assays and were followed longitudinally. A group of 17 convalescent COVID-19 individuals without persistent symptoms were included as a comparison group. RESULTS: The median age was 40 [interquartile range: 35-54] years and 18 (60%) were female. At a median time of 152 [102-164] days after symptom onset, fever, cough and dyspnea were less frequently reported compared with the initial presentation, but paresthesia and burning pain emerged in 18 (60%) and 13 (43%) patients, respectively. The clinical examination was unremarkable in all patients, although the median fatigue and pain visual analog scales were 7 [5-8] and 5 [2-6], respectively. Extensive biologic studies were unremarkable, and multiplex cytokines and ultra-sensitive interferon-α2 measurements were similar between long-haulers and convalescent COVID-19 individuals without persistent symptoms. Using SARS-CoV-2 serology and IFN-γ ELISPOT, we found evidence of a previous SARS-CoV-2 infection in 50% (15/30) of patients, with evidence of a lack of immune response, or a waning immune response, in two patients. Finally, psychiatric evaluation showed that 11 (36.7%), 13 (43.3%) and 9 (30%) patients had a positive screening for anxiety, depression and post-traumatic stress disorder, respectively. CONCLUSIONS: Half of patients seeking medical help for post-acute COVID-19 syndrome lack SARS-CoV-2 immunity. The presence of SARS-CoV-2 immunity, or not, had no consequence on the clinical or biologic characteristics of post-acute COVID-19 syndrome patients, all of whom reported severe fatigue, altered quality of life and psychologic distress.

6.
J Proteomics ; 179: 131-139, 2018 05 15.
Article En | MEDLINE | ID: mdl-29567292

Methylobacterium strains can use one-carbon compounds, such as methanol, for methylotrophic growth. In addition to methanol, a few strains also utilize dichloromethane, a major industrial chlorinated solvent pollutant. With a fully assembled and annotated genome, M. extorquens DM4 is the reference bacterium for aerobic dichloromethane degradation. The doublet N-terminal oriented proteomics (dN-TOP) strategy was applied to further improve its genome annotation and a differential proteomics approach was performed to compare M. extorquens DM4 grown either with methanol or dichloromethane as the sole source of carbon and energy. These approaches led to experimental confirmation of 259 hypothetical proteins, correction of 78 erroneous predicted start codons, discovery of 39 new proteins and annotation of 66 signal peptides, including essential enzymes involved in methylotrophic growth. SIGNIFICANCE: Dichloromethane (methylene chloride, CH2Cl2, DCM) is one of the most widely used industrial halogenated solvents and a potential carcinogen. Microbial rehabilitation of worldwide-contaminated sites involves DCM breakdown by bacteria that are able to grow using this pollutant as their sole carbon and energy source. The most-studied methylotrophic DCM degrader is Methylobacterium extorquens strain DM4. Proteomic studies of the Methylobacterium genus have been performed previously, but genome-wide investigation of N-termini of expressed proteins has not yet been performed. Differential quantitative proteomic analysis also opens new research perspectives to better monitor and understand bacterial growth with DCM.


Bacterial Proteins , Gene Expression Regulation, Bacterial/drug effects , Methylene Chloride/pharmacology , Methylobacterium extorquens , Proteogenomics , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Methylobacterium extorquens/genetics
7.
Genome Announc ; 5(30)2017 Jul 27.
Article En | MEDLINE | ID: mdl-28751386

The genome sequence of Hyphomicrobium sp. strain GJ21, isolated in the Netherlands from samples of environments contaminated with halogenated pollutants and capable of using dichloromethane as its sole carbon and energy source, was determined.

8.
J Bacteriol ; 196(21): 3712-23, 2014 Nov.
Article En | MEDLINE | ID: mdl-25112480

The mechanisms involved in the virulence of Yersinia pestis, the plague pathogen, are not fully understood. In previous research, we found that a Y. pestis mutant lacking the HicB3 (YPO3369) putative orphan antitoxin was attenuated for virulence in a murine model of bubonic plague. Toxin-antitoxin systems (TASs) are widespread in prokaryotes. Most bacterial species possess many TASs of several types. In type II TASs, the toxin protein is bound and neutralized by its cognate antitoxin protein in the cytoplasm. Here we identify the hicA3 gene encoding the toxin neutralized by HicB3 and show that HicA3-HicB3 constitutes a new functional type II TAS in Y. pestis. Using biochemical and mutagenesis-based approaches, we demonstrate that the HicA3 toxin is an RNase with a catalytic histidine residue. HicB3 has two functions: it sequesters and neutralizes HicA3 by blocking its active site, and it represses transcription of the hicA3B3 operon. Gel shift assays and reporter fusion experiments indicate that the HicB3 antitoxin binds to two operators in the hicA3B3 promoter region. We solved the X-ray structures of HicB3 and the HicA3-HicB3 complex; thus, we present the first crystal structure of a TA complex from the HicAB family. HicB3 forms a tetramer that can bind two HicA3 toxin molecules. HicA3 is monomeric and folds as a double-stranded-RNA-binding domain. The HicB3 N-terminal domain occludes the HicA3 active site, whereas its C-terminal domain folds as a ribbon-helix-helix DNA-binding motif.


Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Gene Expression Regulation, Bacterial/physiology , Yersinia pestis/metabolism , Animals , Antitoxins/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Base Composition , Mice , Models, Molecular , Molecular Sequence Data , Plague/microbiology , Promoter Regions, Genetic , Protein Conformation , Virulence , Yersinia pestis/genetics , Yersinia pestis/pathogenicity
...