Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 167: 473-488, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688954

RESUMEN

We introduce a large-scale neurocomputational model of spatial cognition called 'Spacecog', which integrates recent findings from mechanistic models of visual and spatial perception. As a high-level cognitive ability, spatial cognition requires the processing of behaviourally relevant features in complex environments and, importantly, the updating of this information during processes of eye and body movement. The Spacecog model achieves this by interfacing spatial memory and imagery with mechanisms of object localisation, saccade execution, and attention through coordinate transformations in parietal areas of the brain. We evaluate the model in a realistic virtual environment where our neurocognitive model steers an agent to perform complex visuospatial tasks. Our modelling approach opens up new possibilities in the assessment of neuropsychological data and human spatial cognition.


Asunto(s)
Cognición , Memoria Espacial , Humanos , Visión Ocular , Percepción Espacial , Atención , Percepción Visual
2.
PLoS Comput Biol ; 17(9): e1009434, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34570749

RESUMEN

Environmental information is required to stabilize estimates of head direction (HD) based on angular path integration. However, it is unclear how this happens in real-world (visually complex) environments. We present a computational model of how visual feedback can stabilize HD information in environments that contain multiple cues of varying stability and directional specificity. We show how combinations of feature-specific visual inputs can generate a stable unimodal landmark bearing signal, even in the presence of multiple cues and ambiguous directional specificity. This signal is associated with the retrosplenial HD signal (inherited from thalamic HD cells) and conveys feedback to the subcortical HD circuitry. The model predicts neurons with a unimodal encoding of the egocentric orientation of the array of landmarks, rather than any one particular landmark. The relationship between these abstract landmark bearing neurons and head direction cells is reminiscent of the relationship between place cells and grid cells. Their unimodal encoding is formed from visual inputs via a modified version of Oja's Subspace Algorithm. The rule allows the landmark bearing signal to disconnect from directionally unstable or ephemeral cues, incorporate newly added stable cues, support orientation across many different environments (high memory capacity), and is consistent with recent empirical findings on bidirectional HD firing reported in the retrosplenial cortex. Our account of visual feedback for HD stabilization provides a novel perspective on neural mechanisms of spatial navigation within richer sensory environments, and makes experimentally testable predictions.


Asunto(s)
Modelos Neurológicos , Orientación/fisiología , Navegación Espacial/fisiología , Algoritmos , Animales , Biología Computacional , Simulación por Computador , Señales (Psicología) , Ambiente , Retroalimentación Sensorial/fisiología , Giro del Cíngulo/fisiología , Cabeza/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología
3.
Nat Rev Neurosci ; 21(9): 453-470, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32764728

RESUMEN

Several types of neurons involved in spatial navigation and memory encode the distance and direction (that is, the vector) between an agent and items in its environment. Such vectorial information provides a powerful basis for spatial cognition by representing the geometric relationships between the self and the external world. Here, we review the explicit encoding of vectorial information by neurons in and around the hippocampal formation, far from the sensory periphery. The parahippocampal, retrosplenial and parietal cortices, as well as the hippocampal formation and striatum, provide a plethora of examples of vector coding at the single neuron level. We provide a functional taxonomy of cells with vectorial receptive fields as reported in experiments and proposed in theoretical work. The responses of these neurons may provide the fundamental neural basis for the (bottom-up) representation of environmental layout and (top-down) memory-guided generation of visuospatial imagery and navigational planning.


Asunto(s)
Cognición/fisiología , Neuronas/fisiología , Navegación Espacial/fisiología , Animales , Corteza Cerebral/fisiología , Hipocampo/fisiología , Humanos , Memoria/fisiología
4.
Hippocampus ; 30(3): 220-232, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31408264

RESUMEN

Hippocampal formation contains several classes of neurons thought to be involved in navigational processes, in particular place cells and grid cells. Place cells have been associated with a topological strategy for navigation, while grid cells have been suggested to support metric vector navigation. Grid cell-based vector navigation can support novel shortcuts across unexplored territory by providing the direction toward the goal. However, this strategy is insufficient in natural environments cluttered with obstacles. Here, we show how navigation in complex environments can be supported by integrating a grid cell-based vector navigation mechanism with local obstacle avoidance mediated by border cells and place cells whose interconnections form an experience-dependent topological graph of the environment. When vector navigation and object avoidance fail (i.e., the agent gets stuck), place cell replay events set closer subgoals for vector navigation. We demonstrate that this combined navigation model can successfully traverse environments cluttered by obstacles and is particularly useful where the environment is underexplored. Finally, we show that the model enables the simulated agent to successfully navigate experimental maze environments from the animal literature on cognitive mapping. The proposed model is sufficiently flexible to support navigation in different environments, and may inform the design of experiments to relate different navigational abilities to place, grid, and border cell firing.


Asunto(s)
Corteza Entorrinal/fisiología , Células de Red/fisiología , Hipocampo/fisiología , Modelos Neurológicos , Células de Lugar/fisiología , Navegación Espacial/fisiología , Animales , Ambiente
5.
Curr Biol ; 29(6): 979-990.e4, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30853437

RESUMEN

Models of face, object, and scene recognition traditionally focus on massively parallel processing of low-level features, with higher-order representations emerging at later processing stages. However, visual perception is tightly coupled to eye movements, which are necessarily sequential. Recently, neurons in entorhinal cortex have been reported with grid cell-like firing in response to eye movements, i.e., in visual space. Following the presumed role of grid cells in vector navigation, we propose a model of recognition memory for familiar faces, objects, and scenes, in which grid cells encode translation vectors between salient stimulus features. A sequence of saccadic eye-movement vectors, moving from one salient feature to the expected location of the next, potentially confirms an initial hypothesis (accumulating evidence toward a threshold) about stimulus identity, based on the relative feature layout (i.e., going beyond recognition of individual features). The model provides an explicit neural mechanism for the long-held view that directed saccades support hypothesis-driven, constructive perception and recognition; is compatible with holistic face processing; and constitutes the first quantitative proposal for a role of grid cells in visual recognition. The variance of grid cell activity along saccade trajectories exhibits 6-fold symmetry across 360 degrees akin to recently reported fMRI data. The model suggests that disconnecting grid cells from occipitotemporal inputs may yield prosopagnosia-like symptoms. The mechanism is robust with regard to partial visual occlusion, can accommodate size and position invariance, and suggests a functional explanation for medial temporal lobe involvement in visual memory for relational information and memory-guided attention.


Asunto(s)
Células de Red/fisiología , Memoria/fisiología , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología , Humanos , Estimulación Luminosa , Movimientos Sacádicos/fisiología
6.
Elife ; 72018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30176988

RESUMEN

We present a model of how neural representations of egocentric spatial experiences in parietal cortex interface with viewpoint-independent representations in medial temporal areas, via retrosplenial cortex, to enable many key aspects of spatial cognition. This account shows how previously reported neural responses (place, head-direction and grid cells, allocentric boundary- and object-vector cells, gain-field neurons) can map onto higher cognitive function in a modular way, and predicts new cell types (egocentric and head-direction-modulated boundary- and object-vector cells). The model predicts how these neural populations should interact across multiple brain regions to support spatial memory, scene construction, novelty-detection, 'trace cells', and mental navigation. Simulated behavior and firing rate maps are compared to experimental data, for example showing how object-vector cells allow items to be remembered within a contextual representation based on environmental boundaries, and how grid cells could update the viewpoint in imagery during planning and short-cutting by driving sequential place cell activity.


Asunto(s)
Imágenes en Psicoterapia , Modelos Neurológicos , Memoria Espacial , Simulación por Computador , Humanos , Neuronas/fisiología , Lóbulo Temporal/fisiología , Grabación en Video
7.
J Neurosci ; 36(46): 11601-11618, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852770

RESUMEN

Allocentric (world-centered) spatial codes driven by path integration accumulate error unless reset by environmental sensory inputs that are necessarily egocentric (body-centered). Previous models of the head direction system avoided the necessary transformation between egocentric and allocentric reference frames by placing visual cues at infinity. Here we present a model of head direction coding that copes with exclusively proximal cues by making use of a conjunctive representation of head direction and location in retrosplenial cortex. Egocentric landmark bearing of proximal cues, which changes with location, is mapped onto this retrosplenial representation. The model avoids distortions due to parallax, which occur in simple models when a single proximal cue card is used, and can also accommodate multiple cues, suggesting how it can generalize to arbitrary sensory environments. It provides a functional account of the anatomical distribution of head direction cells along Papez' circuit, of place-by-direction coding in retrosplenial cortex, the anatomical connection from the anterior thalamic nuclei to retrosplenial cortex, and the involvement of retrosplenial cortex in navigation. In addition to parallax correction, the same mechanism allows for continuity of head direction coding between connected environments, and shows how a head direction representation can be stabilized by a single within arena cue. We also make predictions for drift during exploration of a new environment, the effects of hippocampal lesions on retrosplenial cells, and on head direction coding in differently shaped environments. SIGNIFICANCE STATEMENT: The activity of head direction cells signals the direction of an animal's head relative to landmarks in the world. Although driven by internal estimates of head movements, head direction cells must be kept aligned to the external world by sensory inputs, which arrive in the reference frame of the sensory receptors. We present a computational model, which proposes that sensory inputs are correctly associated to head directions by virtue of a conjunctive representation of place and head directions in the retrosplenial cortex. The model allows for a stable head direction signal, even when the sensory input from nearby cues changes dramatically whenever the animal moves to a different location, and enables stable representations of head direction across connected environments.


Asunto(s)
Corteza Cerebral/fisiología , Movimientos de la Cabeza/fisiología , Cabeza/fisiología , Modelos Neurológicos , Orientación/fisiología , Navegación Espacial/fisiología , Animales , Simulación por Computador , Ecosistema , Retroalimentación Sensorial/fisiología , Humanos , Percepción Espacial , Conducta Espacial/fisiología
8.
J Physiol ; 594(22): 6535-6546, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-26607203

RESUMEN

Estimates of location or orientation can be constructed solely from sensory information representing environmental cues. In unfamiliar or sensory-poor environments, these estimates can also be maintained and updated by integrating self-motion information. However, the accumulation of error dictates that updated representations of heading direction and location become progressively less reliable over time, and must be corrected by environmental sensory inputs when available. Anatomical, electrophysiological and behavioural evidence indicates that angular and translational path integration contributes to the firing of head direction cells and grid cells. We discuss how sensory inputs may be combined with self-motion information in the firing patterns of these cells. For head direction cells, direct projections from egocentric sensory representations of distal cues can help to correct cumulative errors. Grid cells may benefit from sensory inputs via boundary vector cells and place cells. However, the allocentric code of boundary vector cells and place cells requires consistent head-direction information in order to translate the sensory signal of egocentric boundary distance into allocentric boundary vector cell firing, suggesting that the different spatial representations found in and around the hippocampal formation are interdependent. We conclude that, rather than representing pure path integration, the firing of head-direction cells and grid cells reflects the interface between self-motion and environmental sensory information. Together with place cells and boundary vector cells they can support a coherent unitary representation of space based on both environmental sensory inputs and path integration signals.


Asunto(s)
Cabeza/fisiología , Neuronas/fisiología , Orientación/fisiología , Percepción Espacial/fisiología , Animales , Ambiente , Humanos , Modelos Neurológicos , Movimiento (Física)
9.
Integr Comp Biol ; 53(2): 269-82, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23784700

RESUMEN

Animals have to coordinate a large number of muscles in different ways to efficiently move at various speeds and in different and complex environments. This coordination is in large part based on central pattern generators (CPGs). These neural networks are capable of producing complex rhythmic patterns when activated and modulated by relatively simple control signals. Although the generation of particular gaits by CPGs has been successfully modeled at many levels of abstraction, the principles underlying the generation and selection of a diversity of patterns of coordination in a single neural network are still not well understood. The present work specifically addresses the flexibility of the spinal locomotor networks in salamanders. We compare an abstract oscillator model and a CPG network composed of integrate-and-fire neurons, according to their ability to account for different axial patterns of coordination, and in particular the transition in gait between swimming and stepping modes. The topology of the network is inspired by models of the lamprey CPG, complemented by additions based on experimental data from isolated spinal cords of salamanders. Oscillatory centers of the limbs are included in a way that preserves the flexibility of the axial network. Similarly to the selection of forward and backward swimming in lamprey models via different excitation to the first axial segment, we can account for the modification of the axial coordination pattern between swimming and forward stepping on land in the salamander model, via different uncoupled frequencies in limb versus axial oscillators (for the same level of excitation). These results transfer partially to a more realistic model based on formal spiking neurons, and we discuss the difference between the abstract oscillator model and the model built with formal spiking neurons.


Asunto(s)
Locomoción/fisiología , Modelos Biológicos , Modelos Neurológicos , Nervios Espinales/fisiología , Urodelos/fisiología , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/fisiología , Marcha/fisiología , Red Nerviosa/fisiología , Nervios Espinales/anatomía & histología , Natación/fisiología , Factores de Tiempo , Urodelos/anatomía & histología
10.
Biol Cybern ; 107(5): 565-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23463500

RESUMEN

The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.


Asunto(s)
Lampreas/fisiología , Modelos Neurológicos , Urodelos/fisiología , Animales , Evolución Biológica , Cibernética , Fenómenos Electrofisiológicos , Canales Iónicos/fisiología , Locomoción/fisiología , N-Metilaspartato/fisiología , Red Nerviosa/fisiología , Médula Espinal/fisiología , Transmisión Sináptica
11.
Biol Cybern ; 107(5): 545-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23430277

RESUMEN

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.


Asunto(s)
Locomoción/fisiología , Modelos Biológicos , Robótica , Urodelos/fisiología , Animales , Cibernética , Extremidades/fisiología , Retroalimentación Sensorial/fisiología , Red Nerviosa/fisiología , Natación/fisiología
12.
Front Neurorobot ; 5: 3, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22069388

RESUMEN

Here, we investigate the role of sensory feedback in gait generation and transition by using a three-dimensional, neuro-musculo-mechanical model of a salamander with realistic physical parameters. Activation of limb and axial muscles were driven by neural output patterns obtained from a central pattern generator (CPG) which is composed of simulated spiking neurons with adaptation. The CPG consists of a body-CPG and four limb-CPGs that are interconnected via synapses both ipsilaterally and contralaterally. We use the model both with and without sensory modulation and four different combinations of ipsilateral and contralateral coupling between the limb-CPGs. We found that the proprioceptive sensory inputs are essential in obtaining a coordinated lateral sequence walking gait (walking). The sensory feedback includes the signals coming from the stretch receptor like intraspinal neurons located in the girdle regions and the limb stretch receptors residing in the hip and scapula regions of the salamander. On the other hand, walking trot gait (trotting) is more under central (CPG) influence compared to that of the peripheral or sensory feedback. We found that the gait transition from walking to trotting can be induced by increased activity of the descending drive coming from the mesencephalic locomotor region and is helped by the sensory inputs at the hip and scapula regions detecting the late stance phase. More neurophysiological experiments are required to identify the precise type of mechanoreceptors in the salamander and the neural mechanisms mediating the sensory modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...