Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(32): 19218-19222, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920216

RESUMEN

Auger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior. Our result shows that the LVV spectra of Cu can be represented by atomic multiplet calculations, those of Co resemble the self-convolution of the valence band and those of Ni are a mixture of both, consistent with the Cini-Sawatzky model.

2.
ACS Mater Au ; 2(3): 301-312, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35578703

RESUMEN

Lead halide perovskite solar cells have reached power conversion efficiencies during the past few years that rival those of crystalline silicon solar cells, and there is a concentrated effort to commercialize them. The use of gold electrodes, the current standard, is prohibitively costly for commercial application. Copper is a promising low-cost electrode material that has shown good stability in perovskite solar cells with selective contacts. Furthermore, it has the potential to be self-passivating through the formation of CuI, a copper salt which is also used as a hole selective material. Based on these opportunities, we investigated the interface reactions between lead halide perovskites and copper in this work. Specifically, copper was deposited on the perovskite surface, and the reactions were followed in detail using synchrotron-based and in-house photoelectron spectroscopy. The results show a rich interfacial chemistry with reactions starting upon deposition and, with the exposure to oxygen and moisture, progress over many weeks, resulting in significant degradation of both the copper and the perovskite. The degradation results not only in the formation of CuI, as expected, but also in the formation of two previously unreported degradation products. The hope is that a deeper understanding of these processes will aid in the design of corrosion-resistant copper-based electrodes.

3.
J Chem Phys ; 140(17): 174702, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811650

RESUMEN

The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and scanning tunneling microscopy. Our results suggest that at low coverage ZnPc lies almost parallel to the Pt(111) substrate, in a non-planar configuration induced by Zn-Pt attraction, leading to an inhomogeneous charge distribution within the molecule and an inhomogeneous charge transfer to the molecule. ZnPc does not form a complete monolayer on the Pt surface, due to a surface-mediated intermolecular repulsion. At higher coverage ZnPc adopts a tilted geometry, due to a reduced molecule-substrate interaction. Our photoemission results illustrate that ZnPc is practically decoupled from Pt, already from the second layer. Pre-deposition of iodine on Pt hinders the Zn-Pt attraction, leading to a non-distorted first layer ZnPc in contact with Pt(111)-I(√3×√3) or Pt(111)-I(√7×√7), and a more homogeneous charge distribution and charge transfer at the interface. On increased ZnPc thickness iodine is dissolved in the organic film where it acts as an electron acceptor dopant.


Asunto(s)
Carbono/química , Yodo/química , Platino (Metal)/química , Adsorción , Electrones , Indoles/química , Microscopía de Túnel de Rastreo , Compuestos Organometálicos/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA