Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 15: 724, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25163646

RESUMEN

BACKGROUND: Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs). RESULTS: We determined a substantial "core" set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modifications (defined as >50 kb peak length) for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs. CONCLUSIONS: Overall, our "core set" data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells.


Asunto(s)
Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Histonas/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Anciano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Células Tumorales Cultivadas
2.
Cell ; 155(1): 81-93, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074862

RESUMEN

The importance of maternal folate consumption for normal development is well established, yet the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (Mtrr) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay, and congenital malformations, including neural tube, heart, and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wild-type grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed that Mtrr deficiency in mice lead to two distinct, separable phenotypes: adverse effects on their wild-type daughters' uterine environment, leading to growth defects in wild-type grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance.


Asunto(s)
Anomalías Congénitas/genética , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Ferredoxina-NADP Reductasa/genética , Retardo del Crecimiento Fetal/genética , Ácido Fólico/metabolismo , Animales , Cruzamientos Genéticos , Metilación de ADN , Femenino , Ferredoxina-NADP Reductasa/metabolismo , Masculino , Ratones , Mutación
3.
Anesth Analg ; 108(2): 484-90, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19151276

RESUMEN

BACKGROUND: Anesthesia is produced by a depression of neuronal signaling in the central nervous system (CNS); however, the mechanism(s) of action underlying this depression remain unclear. Recent studies have indicated that anesthetics can enhance inhibition of CNS neurons by increasing current flow through tonic gamma-aminobutyric acid (GABA(A)) receptor gated chloride channels in their membranes. Enhanced tonic inhibition would contribute to CNS depression produced by anesthetics, but it remains to be determined to what extent anesthetic actions at these receptors contribute to CNS depression. In the present study, we compared and contrasted the involvement of tonic versus synaptic GABA(A) receptors in the functional depression of CNS neurons produced by isoflurane and thiopental. METHODS: In rat hippocampal slices, whole cell patch clamp recordings were used to study anesthetic effects on CA1 neuron intrinsic excitability, and population spike recordings were used to investigate effects on synaptically evoked discharge. These responses were chosen to test whether anesthetic effects on GABA receptors alter single neuron discharge and/or circuit level synaptic functioning. Phasic (synaptic) GABA receptors were selectively blocked using the GABA(A) antagonist gabazine and tonic responses were blocked using the chloride channel blocker picrotoxin. RESULTS: Clinically relevant and equi-effective concentrations of thiopental and isoflurane depressed CA1 neuron synaptically evoked discharge. This depression was partially reversed by blocking synaptic GABA(A) receptors with gabazine (20 microM). The thiopental-induced depression was reversed by approximately 60%, but the isoflurane-induced depression was reversed by only approximately 20%. Blocking tonic GABA(A) receptors with the addition of 100 microM picrotoxin produced an additional 40% reversal of the thiopental-induced depression, but no additional reversal was seen for isoflurane-depressed responses. In response to direct DC current injection, CA1 neuron discharge was depressed by thiopental and membrane conductance was increased. Both of these effects were reversed by picrotoxin, but not by gabazine. Isoflurane, in contrast, neither depressed current-evoked discharge, nor altered the membrane conductance of CA1 neurons. CONCLUSIONS: These results indicate that general anesthetics discriminate between synaptic and tonic GABA(A) receptors. Effects on both phasic and tonic receptors combined to depress circuit responses produced by thiopental, whereas only effects on synaptic GABA receptors appeared to play an important role for isoflurane. Together with the other known sites of action for these two anesthetics, our results support a multisite, agent-specific mechanism for anesthetic actions.


Asunto(s)
Anestésicos/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Animales , Antagonistas del GABA/farmacología , Moduladores del GABA/farmacología , Hipocampo/citología , Isoflurano/farmacología , Células Piramidales/efectos de los fármacos , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Tiopental/farmacología
4.
Proc Natl Acad Sci U S A ; 104(49): 19416-21, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18042715

RESUMEN

Mutations in MECP2 cause the autism-spectrum disorder Rett syndrome. MeCP2 is predicted to bind to methylated promoters and silence transcription. However, the first large-scale mapping of neuronal MeCP2-binding sites on 26.3 Mb of imprinted and nonimprinted loci revealed that 59% of MeCP2-binding sites are outside of genes and that only 6% are in CpG islands. Integrated genome-wide promoter analysis of MeCP2 binding, CpG methylation, and gene expression revealed that 63% of MeCP2-bound promoters are actively expressed and that only 6% are highly methylated. These results indicate that the primary function of MeCP2 is not the silencing of methylated promoters.


Asunto(s)
Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Silenciador del Gen , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas
5.
J Biol Chem ; 282(13): 9703-9712, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17259635

RESUMEN

It has been proposed that ZNF217, which is amplified at 20q13 in various tumors, plays a key role during neoplastic transformation. ZNF217 has been purified in complexes that contain repressor proteins such as CtBP2, suggesting that it acts as a transcriptional repressor. However, the function of ZNF217 has not been well characterized due to a lack of known target genes. Using a global chromatin immunoprecipitation (ChIP)-chip approach, we identified thousands of ZNF217 binding sites in three tumor cell lines (MCF7, SW480, and Ntera2). Further analysis of ZNF217 in Ntera2 cells showed that many promoters are bound by ZNF217 and CtBP2 and that a subset of these promoters are activated upon removal of ZNF217. Thus, our in vivo studies corroborate the in vitro biochemical analyses of ZNF217-containing complexes and support the hypothesis that ZNF217 functions as a transcriptional repressor. Gene ontology analysis showed that ZNF217 targets in Ntera2 cells are involved in organ development, suggesting that one function of ZNF217 may be to repress differentiation. Accordingly we show that differentiation of Ntera2 cells with retinoic acid led to down-regulation of ZNF217. Our identification of thousands of ZNF217 target genes will enable further studies of the consequences of aberrant expression of ZNF217 during neoplastic transformation.


Asunto(s)
Inmunoprecipitación de Cromatina , Regulación Neoplásica de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncogenes/fisiología , Transactivadores/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Humanos , Transactivadores/fisiología , Dedos de Zinc/genética
6.
Vis Neurosci ; 21(4): 545-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15579220

RESUMEN

Synaptically localized calcium channels shape the timecourse of synaptic release, are a prominent site for neuromodulation, and have been implicated in genetic disease. In retina, it is well established that L-type calcium channels play a major role in mediating release of glutamate from the photoreceptors and bipolar cells. However, little is known about which calcium channels are coupled to synaptic exocytosis of glycine, which is primarily released by amacrine cells. A recent report indicates that glycine release from spiking AII amacrine cells relies exclusively upon L-type calcium channels. To identify calcium channel types controlling neurotransmitter release from the population of glycinergic neurons that drive retinal ganglion cells, we recorded electrical and potassium evoked inhibitory synaptic currents (IPSCs) from these postsynaptic neurons in retinal slices from tiger salamanders. The L-channel antagonist nifedipine strongly inhibited release and FPL64176, an L-channel agonist, greatly enhanced it, indicating a significant role for L-channels. omega-Conotoxin MVIIC, an N/P/Q-channel antagonist, strongly inhibited release, indicating an important role for non-L channels. While the P/Q-channel blocker omega-Aga IVA produced only small effects, the N-channel blocker omega-conotoxin GVIA strongly inhibited release. Hence, N-type and L-type calcium channels appear to play major roles, overall, in mediating synaptic release of glycine onto retinal ganglion cells.


Asunto(s)
Ambystoma/fisiología , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo N/fisiología , Glicina/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Conductividad Eléctrica , Estimulación Eléctrica , Técnicas In Vitro , Inhibición Neural/fisiología , Neurotransmisores/metabolismo , Potasio/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
7.
J Neurophysiol ; 92(3): 1658-67, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15140905

RESUMEN

Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABA(A) inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. Propofol strongly depressed action potential production induced by DC injection, synaptic stimulation, or high-potassium solutions. Propofol-induced depression of intrinsic excitability was completely reversed by bicuculline and picrotoxin but was strychnine-insensitive, implicating GABA(A) but not glycine receptors. Propofol strongly enhanced inhibitory postsynaptic currents (IPSCs) and induced a tonic GABA(A)-mediated current. We pharmacologically differentiated tonic and phasic (synaptic) GABA(A)-mediated inhibition using the GABA(A) receptor antagonist SR95531 (gabazine). Gabazine (20 microM) completely blocked both evoked and spontaneous IPSCs but failed to block the propofol-induced depression of intrinsic excitability, implicating tonic, but not phasic, GABA(A) inhibition. Glutamatergic synaptic responses were not altered by propofol (< or =30 microM). Similar results were found in both interneurons and pyramidal cells and with the chemically unrelated anesthetic thiopental. These results suggest that suppression of CA1 neuron intrinsic excitability, by these anesthetics, is largely due to activation of tonic GABA(A) conductances; although other sites of action may play important roles in affecting synaptic transmission, which also can produce strong neurodepression. We propose that for some anesthetics, suppression of intrinsic excitability, mediated by tonic GABA(A) conductances, operates in conjunction with effects on synaptic transmission, mediated by other mechanisms, to depress hippocampal function during anesthesia.


Asunto(s)
Anestésicos Intravenosos/farmacología , Interneuronas/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología , Animales , Bicuculina/farmacología , Antagonistas de Receptores de GABA-A , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Propofol/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA