Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569317

RESUMEN

The MCC family of genes plays a role in colorectal cancer development through various immunological pathways, including the Th17/Treg axis. We have previously shown that MCC1 but not MCC2 plays a role in Treg differentiation. Our understanding of the genetic divergence patterns and evolutionary history of the MCC family in relation to its function, in general, and the Th17/Treg axis, in particular, remains incomplete. In this investigation, we explored 12 species' genomes to study the phylogenetic origin, structure, and functional specificity of this family. In vertebrates, both MCC1 and MCC2 homologs have been discovered, while invertebrates have a single MCC homolog. We found MCC homologs as early as Cnidarians and Trichoplax, suggesting that the MCC family first appeared 741 million years ago (Ma), whereas MCC divergence into the MCC1 and MCC2 families occurred at 540 Ma. In general, we did not detect significant positive selection regulating MCC evolution. Our investigation, based on MCC1 structural similarity, suggests that they may play a role in the evolutionary changes in Tregs' emergence towards complexity, including the ability to utilize calcium for differentiation through the use of the EFH calcium-binding domain. We also found that the motif NPSTGE was highly conserved in MCC1, but not in MCC2. The NPSTGE motif binds KEAP1 with high affinity, suggesting an Nrf2-mediated function for MCC1. In the case of MCC2, we found that the "modifier of rudimentary" motif is highly conserved. This motif contributes to the regulation of alternative splicing. Overall, our study sheds light on how the evolution of the MCC family is connected to its function in regulating the Th17/Treg axis.


Asunto(s)
Neoplasias Colorrectales , Linfocitos T Reguladores , Animales , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Filogenia , Calcio , Factor 2 Relacionado con NF-E2/genética , Neoplasias Colorrectales/genética , Células Th17
2.
Genes (Basel) ; 13(5)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35627275

RESUMEN

The relationship between the evolutionary history and the differentiation of Bregs is still not clear. Bregs were demonstrated to possess a regulatory effect on B cells. Various subsets of Bregs have been identified including T2-MZP, MZ, B10, IL10-producing plasma cells, IL10 producing plasmablasts, immature IL10 producing B cells, TIM1, and Br1. It is known that B cells have evolved during fish emergence. However, the origin of Bregs is still not known. Three main models have been previously proposed to describe the origin of Bregs, the first known as single-single (SS) suggests that each type of Bregs subpopulation has emerged from a single pre-Breg type. The second model (single-multi) (SM) assumes that a single Bregs gave rise to multiple types of Bregs that in turn differentiated to other Breg subpopulations. In the third model (multi-multi) (MM), it is hypothesized that Bregs arise from the nearest B cell phenotype. The link between the differentiation of cells and the evolution of novel types of cells is known to follow one of three evolutionary patterns (i.e., homology, convergence, or concerted evolution). Another aspect that controls differentiation and evolution processes is the principle of optimization of energy, which suggests that an organism will always use the choice that requires less energy expenditure for survival. In this review, we investigate the evolution of Breg subsets. We studied the feasibility of Breg origination models based on evolution and energy constraints. In conclusion, our review indicates that Bregs are likely to have evolved under a combination of SM-MM models. This combination ensured successful survival in harsh conditions by following the least costly differentiation pathway, as well as adapting to changing environmental conditions.


Asunto(s)
Linfocitos B Reguladores , Interleucina-10 , Animales , Linfocitos B Reguladores/metabolismo , Diferenciación Celular
3.
Insects ; 12(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34680651

RESUMEN

Understanding the evolutionary relationship between immune cells and the blood-brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.

4.
Genes (Basel) ; 12(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073576

RESUMEN

Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells' presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFß, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Evolución Molecular , Interleucinas/genética , Receptores de Interleucina/genética , Animales , Humanos , Homología de Secuencia
5.
Genes (Basel) ; 12(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578809

RESUMEN

Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system.


Asunto(s)
Células Endoteliales/metabolismo , Leucocitos/metabolismo , Proteínas/genética , Migración Transcelular de la Célula/genética , Transcriptoma , Migración Transendotelial y Transepitelial/genética , Animales , Evolución Biológica , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Pollos/clasificación , Pollos/genética , Pollos/metabolismo , Ciona intestinalis/clasificación , Ciona intestinalis/citología , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Drosophila melanogaster/clasificación , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Endoteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Leucocitos/citología , Ratones , Pan troglodytes/clasificación , Pan troglodytes/genética , Pan troglodytes/metabolismo , Petromyzon/clasificación , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Placozoa/clasificación , Placozoa/citología , Placozoa/genética , Placozoa/metabolismo , Proteínas/clasificación , Proteínas/metabolismo , Anémonas de Mar/clasificación , Anémonas de Mar/citología , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Tiburones/clasificación , Tiburones/genética , Tiburones/metabolismo , Pez Cebra/clasificación , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...