Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15280, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714912

RESUMEN

Pulmonary arterial hypertension is a rare but life-threatening and clinically heterogeneous disease. The diagnostic schedule of this disorder is complex, and no specific indicator of the arterial etiology has been explored. In this study, untargeted plasma metabolomics was applied to evaluate the metabolic fingerprints of pulmonary arterial hypertension patients. Plasma samples were prepared using a new approach, which applies proteinase K during the sample preparation procedure to increase the metabolite coverage. The metabolic fingerprints were determined via LC-MS and subsequently analyzed with the use of both uni- and multivariate statistics. A total of 21 metabolites were discovered to be significantly altered in pulmonary arterial hypertensive patients. The metabolites were mainly related to the phospholipid metabolic pathways. In this study, decreases were found in the phosphatidylcholines (PCs) [PC(32:0), PC(40:7), PC(42:7)], phosphatidylethanolamine PE(18:0/18:2), lysophosphatidylethanolamines (LPEs) [LPE(22:6), LPE(18:2), LPE(18:0), LPE(20:4), LPE(20:1), LPE(20:0)], lysophosphatidylcholine LPC(20:4) and lysophosphatidylserine LPS(19:0), as well as increase of sphingomyelin SM(36:2), in the plasma samples of pulmonary arterial hypertensive patients in comparison to the control group. Besides their function as components of the biological membranes, these metabolites are also involved in the intracellular signaling pathways that are related to cell proliferation and apoptosis. The results obtained during this study confirm the potential of (untargeted) metabolomics to identify the molecular characteristics of the pathophysiology of pulmonary arterial hypertension. The clinical relevance of this study constitutes the selection of a metabolic panel that can potentially detect and properly diagnose the disease.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Endopeptidasa K , Hipertensión Pulmonar Primaria Familiar , Metabolómica , Arteria Pulmonar
2.
Analyst ; 148(16): 3883-3891, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37458061

RESUMEN

Metabolites in biological matrices belong to diverse chemical groups, ranging from non-polar long-chain fatty acids to small polar molecules. The goal of untargeted metabolomic analysis is to measure the highest number of metabolites in the sample. Nevertheless, from an analytical point of view, no single technique can measure such a broad spectrum of analytes. Therefore, we selected a method based on GC-MS and LC-MS with two types of stationary phases for the untargeted profiling of gastrointestinal stromal tumours. The procedure was applied to GIST xenograft samples (n = 71) representing four different mutation models, half of which were treated with imatinib. We aimed to verify the method coverage and advantages of applying each technique. RP-LC-MS measured most metabolites due to a significant fraction of lipid components of the tumour tissue. What is unique and worth noting is that all applied techniques were able to distinguish between different mutation models. However, for detecting imatinib-induced alterations in the GIST metabolome, RP-LC-MS and GC-MS proved to be more relevant than HILIC-LC-MS, resulting in a higher number of significantly changed metabolites in four treated models. Undoubtedly, the inclusion of all mentioned techniques makes the method more comprehensive. Nonetheless, for green chemistry and time and labour saving, we assume that RP-LC-MS and GC-MS analyses are sufficient to cover the global GIST metabolome.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Xenoinjertos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Metaboloma , Metabolómica/métodos , Mutación
3.
Front Mol Biosci ; 8: 665661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395519

RESUMEN

Renal dysplasia is a severe congenital abnormality of the kidney parenchyma, which is an important cause of end-stage renal failure in childhood and early adulthood. The diagnosis of renal dysplasia relies on prenatal or postnatal ultrasounds as children show no specific clinical symptoms before chronic kidney disease develops. Prompt diagnosis is important in terms of early introduction of nephroprotection therapy and improved long-term prognosis. Metabolomics was applied to study children with renal dysplasia to provide insight into the changes in biochemical pathways underlying its pathology and in search of early indicators for facilitated diagnosis. The studied cohort consisted of 72 children, 39 with dysplastic kidneys and 33 healthy controls. All subjects underwent comprehensive urine metabolic profiling with the use of gas chromatography and liquid chromatography coupled to mass spectrometry, with two complementary separation modes of the latter. Univariate and multivariate statistical calculations identified a total of nineteen metabolites, differentiating the compared cohorts, independent of their estimated glomerular filtration rate. Seven acylcarnitines, xanthine, and glutamine were downregulated in the urine of renal dysplasia patients. Conversely, renal dysplasia was associated with higher urinary levels of dimethylguanosine, threonic acid or glyceric acid. This is the first metabolomic study of subjects with renal dysplasia. The authors define a characteristic urine metabolic signature in children with dysplastic kidneys, irrespective of renal function, linking the condition with altered fatty acid oxidation, amino acid and purine metabolisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...