Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Genome Med ; 11(1): 47, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31358043

RESUMEN

BACKGROUND: Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. METHODS: The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. RESULTS: We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. CONCLUSIONS: Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.


Asunto(s)
Susceptibilidad a Enfermedades , Técnicas de Diagnóstico Molecular , Herencia Multifactorial , Análisis de la Célula Individual , Animales , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/etiología , Biomarcadores , Biología Computacional/métodos , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Perfilación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Análisis de la Célula Individual/métodos
3.
Front Immunol ; 9: 285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515584

RESUMEN

Objective: CD4+FoxP3+CD25+ regulatory T-cells (Tregs) are important for preventing tissue destruction. Here, we investigate the role of Tregs for protection against experimental arthritis by IFN-α. Methods: Arthritis was triggered by intra-articular injection of methylated bovine serum albumin (mBSA) in wild-type mice, Foxp3DTReGFP+/- mice [allowing selective depletion of Tregs by diphtheria toxin (DT)] and CD4-Cre+/- IFNA1R flox/flox mice (devoid of IFNAR signaling in T-cells) earlier immunized with mBSA, with or without treatment with IFN-α or the indoleamine 2,3-dioxygenase (IDO)-metabolite kynurenine. Tregs were depleted in DT-treated Foxp3DTReGFP+/- mice and enumerated by FoxP3 staining. Suppressive capacity of FACS-sorted CD25+highCD4+ Tregs was tested in vivo by adoptive transfer and ex vivo in cocultures with antigen-stimulated CFSE-stained T-responder (CD25-CD4+) cells. IDO was inhibited by 1-methyl tryptophan. Results: Both control mice and mice devoid of IFNAR-signaling in T helper cells were protected from arthritis by IFN-α. Depletion of Tregs in the arthritis phase, but not at immunization, abolished the protective effect of IFN-α and kynurenine against arthritis. IFN-α increased the number of Tregs in ex vivo cultures upon antigen recall stimulation but not in naïve cells. IFN-α also increased the suppressive capacity of Tregs against mBSA-induced T-responder cell proliferation ex vivo and against arthritis when adoptively transferred. The increased suppressive activity against proliferation conferred by IFN-α was clearly reduced by in vivo inhibition of IDO at immunization, which also abolished the protective effect of IFN-α against arthritis. Conclusion: By activating IDO during antigen sensitization, IFN-α activates Tregs, which prevent arthritis triggered by antigen rechallenge. This is one way by which IFN-α suppresses inflammation.


Asunto(s)
Artritis Experimental/inmunología , Interferón-alfa/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Técnicas de Cocultivo , Toxina Diftérica/administración & dosificación , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Quinurenina/administración & dosificación , Quinurenina/metabolismo , Depleción Linfocítica , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Albúmina Sérica Bovina/inmunología , Transducción de Señal , Triptófano/análogos & derivados , Triptófano/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA