Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(7): 1521-1528, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33735393

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is believed to be responsible for the control mechanisms of cellular defense response and master regulator of antioxidant system by adjustment of endogenous antioxidants, phase II detoxifying enzymes and transporters, so inhibition of Nrf2 could be considered molecule target to overcome drug resistance and cancer progression. By harnessing liposome as an advanced nanoparticles transporter, we formulated Quinacrine known as nrf2 inhibitor into nano-carrier, and sensitized A-549 lung tumor cells to Cisplatin. The aim of this work was to prepare liposome nano-carriers to enhance the bioavailability of Quinacrine and to improve passive targeting in A549 cells. Quinacrine formulation into liposome exposed a mean particle size of 80±5 nm in passive targeting and 110±3 after decoration with chitosan oligosaccharides (COS), respectively. The highest amount of cell death (p<0.05) occurred with the co-incubation of the A549 cells with new formulation and Cisplatin. Additionally, Quinacrine-loaded liposomes declined Nrf2 expression more than Quinacrine alone (p<0.05). Correspondingly, the expression of Nrf2 downstream genes, MRP1, Trx, and bcl2 decreased significantly. Taking all the data into consideration, liposomes containing Quinacrine could ameliorate the effectiveness of Cisplatin by raising the permeability of cancer cells to the abovementioned chemical treatment and might be then given as a candidate to boost the therapeutic protocols in cancer patients.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Liposomas/administración & dosificación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Nanopartículas/administración & dosificación , Quinacrina/administración & dosificación , Células A549 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Factor 2 Relacionado con NF-E2/metabolismo
2.
J Biochem Mol Toxicol ; 33(11): e22399, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31587439

RESUMEN

Resistance to chemotherapy with 5-fluorouracil (5-FU) in patients with colorectal cancer (CRC) is the major obstacle to reach the maximum efficiency of CRC treatment. Combination therapy has emerged as a novel anticancer strategy. The present study evaluates the cotreatment of γ-tocopherol and 5-FU in enhancing the efficacy of chemotherapy against HT-29 colon cancer cells. Cytotoxic effect of this combination was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and a synergistic effect was evaluated by a combination index technique. Nuclear morphology was studied via 4',6-diamidino-2-phenylindole staining and flow cytometric assays were conducted to identify molecular mechanisms of apoptosis and cell cycle progression. We investigated the expression of Cyclin D1, Cyclin E, Bax, and Bcl-2 by a quantitative real-time polymerase chain reaction. The IC50 values for 5-FU and γ-tocopherol were 21.8 ± 2.5 and 14.4 ± 2.6 µM, respectively, and also this combination therapeutic increased the percentage of apoptotic cells from 35% ± 2% to 40% ± 4% (P < .05). Furthermore, incubation HT-29 colon cells with combined concentrations of two drugs caused significant accumulation of cells in the subGsubG1 phase. Our results presented the combination therapy with 5-FU and γ-tocopherol as a novel therapeutic approach, which can enhance the efficacy of chemotherapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Ciclina D1/genética , Ciclina E/genética , Fluorouracilo/uso terapéutico , gamma-Tocoferol/uso terapéutico , Proliferación Celular/efectos de los fármacos , Quimioterapia Adyuvante , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Quimioterapia Combinada , Activadores de Enzimas , Fluorouracilo/efectos adversos , Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/genética
3.
J Cardiovasc Thorac Res ; 11(1): 43-47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024671

RESUMEN

Introduction: microRNAs (miRNAs) are highly conserved, noncoding RNA molecules that regulate gene expression on the post-transcriptional level. Some evidence indicates that microRNAs dysfunction plays a crucial role in human disease development. The role of microRNAs in cardiac growth, hypertrophy, heart failure, cardiovascular complications in diabetes and many other hearth conditions are demonstrated. In this study we aimed to evaluate the expression of six microRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b and mir-145) that have been shown to overexpress in aortic and carotid plaques. Methods: Thirty Coronary Artery Disease patients who underwent elective coronary artery bypass graft surgery were enrolled in the study. The expression patterns of six miRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b, and mir-145) were examined in 30 patients of whom we obtained aorta and saphenous vein samples. Results: In three miRNAs, mir-100, mir-127 and mir-133b, we did not obtain expression data from real-time experiments. We found that the expression level of mir-126, mir-133a and mir145 were lower in aorta in comparison with saphenous vein. Mir-126 was highly expressed in saphenous vein samples (13.8±1.1) when compared with aorta samples (20.2±1.1), although mir133a was highly expressed in saphenous vein samples (16.1±0.5) when compared with the aorta (17.9±1.5). Expression of mir-145 saphenous vein samples was also dramatically higher than aorta (7.2±0.5 versus 10.8±0.6) that was statistically significant (P<0.05). Conclusion: Understanding the role of miRNAs in cardiovascular physiology and diseases might suggest miRNA- based therapeutic methods in the management of coronary artery disease.

4.
J Cardiovasc Thorac Res ; 9(2): 78-84, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740626

RESUMEN

Introduction: Considering importance of fatty acids in developing coronary artery disease (CAD) and lack of information about saphenous vein which is commonly used as coronary arterial bypass, in this study we investigated differences in fatty acids composition between saphenous vein and aorta tissues in patients with CAD. Methods: Biopsy samples of aortic tissues and saphenous veins as well as blood samples were obtained form 42 patients with CAD. Fatty acids composition of the tissues was determined using gas chromatography and also serum lipid profile was evaluated by commercial kits. Results: Levels of palmitic acid (16:0) were significantly higher in aorta in compared with saphenous (P < 0.001). Also levels of most unsaturated fatty acids (16:1, 18:1n-9, 18:1t, 18:2t, 18:3 n-9 and 22:3n-3) were statistically higher in saphenous tissue than aorta tissue (P < 0.05). Mean levels of linoleic acid (18:2 n-6) was higher in aorta tissue in comparison with saphenous tissue (P = 0.01). We observed positive correlations between serum levels of LDL-C with elaidic acid and linoleic acid levels in saphenous. Evaluation of aorta tissue fatty acids revealed that palmitoleic acid (16:1) had positive and arachidonic and linoleic acids had negative correlations with serum HDL-C levels. Conclusion: Our results revealed difference between fatty acids composition of aorta and saphenous vein tissues and existence of correlations between the fatty acids levels with serum lipid profile. The saphenous vein had higher poly-unsaturated fatty acids in compared to aorta tissue and thus this vein is not at risk of atherosclerosis and can be used as coronary arterial bypass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA