Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10603, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719987

RESUMEN

A pro-chiral Schiff base ligand (HL) was synthesized by the reaction of 2-amino-2-ethyl-1,3-propanediol and pyridine-2-carbaldehyde in methanol. The reaction of HL with CuCl2·2H2O and CuBr2 in methanol gave neutral mononuclear Cu(II) complexes with general formula of [Cu(HL)Cl2] (1) and [Cu(HL)Br2] (2), respectively. By slow evaporation of the methanolic solutions of 1 and 2, their enantiomers were isolated in crystalline format. The formation of pure chiral crystals in the racemic mixture was amply authenticated by single crystal X-ray analysis, which indicated that S-[Cu(HL)Cl2], R-[Cu(HL)Cl2], and S-[Cu(HL)Br2] are crystallized in chiral P212121 space group of orthorhombic system. Preferential crystallization was used to isolate the R and S enantiomers as single crystals and the isolated compounds were also studied by CD analysis. Structural studies indicated that the origin of the chirality in these compounds is related to the coordination mode of the employed pro-chiral ligand (HL) because one of its carbon atoms has been converted to a chiral center in the synthesized complexes. Subsequently, these complexes were used in click synthesis of a ß-hydroxy-1,2,3-triazole and the results of catalytic studies indicated that 1 and 2 can act as enantioselective catalysts for the asymmetric synthesis of ß-hydroxy-1,2,3-triazole product under mild condition. This study illustrates the significant capacity of the use of pro-chiral ligands in preparing chiral catalysts based on complexes which can also be considered as an effective approach to cheap chiral catalysts from achiral reagents.

2.
ACS Omega ; 9(5): 5563-5575, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343918

RESUMEN

Synthesis and characterization of two novel copper ß-diketone complexes, where halogen bonds play a pivotal role in shaping their multifaceted structural landscape, have been done in the present study. This study employs X-ray diffraction, ultraviolet-visible (UV-vis) spectroscopy, and infrared (IR) spectroscopy to investigate two copper ß-diketone complexes, [Cu(L1)2(ttfa)2]·2CH3OH (1) and [Cu(L1)(dfpb)2] (2), where Httfa is 4,4,4-trifluoro-1-(thiophen-2-yl)butan-3,1-dione and Hdfpb is 4,4-difluoro-1-phenylbutane-1,3-dione. Complex 1 displays a halogen bond, which contributes to its uniqueness. The coordination sphere around the copper atoms was found to be octahedral for complex 1 and pyramid with a square base for complex 2. The study also extensively discusses the interactions present in these complexes. Hirshfeld surface analysis was employed to gain a more detailed understanding of these interactions, and the results showed that hydrogen-bond interactions contributed above 30% of the whole surface area in both complexes. Additionally, the halogen bond in complex 1 was found to contribute approximately 8% of the surface. Overall, this study provides valuable insights into the structural properties and interactions of copper ß-diketone complexes, which could have potential applications in various fields.

3.
RSC Adv ; 13(25): 16963-16969, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37288378

RESUMEN

An efficient base-mediated/metal-free approach has been developed for the synthesis of 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide derivatives via intramolecular indole N-H alkylation of novel bis-amide Ugi-adducts. In this protocol the Ugi reaction of (E)-cinnamaldehyde derivatives, 2-chloroaniline, indole-2-carboxylic acid and different isocyanides was designed for the preparation of bis-amides. The main highlight of this study is the practical and highly regioselective preparation of new polycyclic functionalized pyrazino derivatives. This system is facilitated by Na2CO3 mediation in DMSO and 100 °C conditions.

4.
Commun Chem ; 6(1): 94, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198430

RESUMEN

Metal complexes are extensively explored as catalysts for oxidation reactions; molecular-based mechanisms are usually proposed for such reactions. However, the roles of the decomposition products of these materials in the catalytic process have yet to be considered for these reactions. Herein, the cyclohexene oxidation in the presence of manganese(III) 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride) (1) in a heterogeneous system via loading the complex on an SBA-15 substrate is performed as a study case. A molecular-based mechanism is usually suggested for such a metal complex. Herein, 1 was selected and investigated under the oxidation reaction by iodosylbenzene or (diacetoxyiodo)benzene (PhI(OAc)2). In addition to 1, at least one of the decomposition products of 1 formed during the oxidation reaction could be considered a candidate to catalyze the reaction. First-principles calculations show that Mn dissolution is energetically feasible in the presence of iodosylbenzene and trace amounts of water.

5.
Langmuir ; 39(15): 5542-5553, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37029750

RESUMEN

Recently, copper(II) complexes have been extensively investigated as oxygen-evolution reaction (OER) catalysts through a water-oxidation reaction. Herein, new findings regarding OER in the presence of a Cu(II) complex with 6,6'-dihydroxy-2,2'-bipyridine ligand are reported. Using scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, Raman spectroscopy, in situ visible microscopy, in situ visible spectroelectrochemistry, X-ray absorption spectroscopy, and electrochemistry, it is hypothesized that the film formed on the electrode's surface in the presence of this complex causes an appropriated matrix to produce Cu (hydr)oxide. The resulting Cu (hydr)oxide could be a candidate for OER catalysis. The formed film could form Cu (hydr)oxide and stabilize it. Thus, OER activity increases in the presence of this complex.

6.
Dalton Trans ; 52(2): 421-433, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36520159

RESUMEN

A Cu(II) complex, [Cu(HL)(NO3)(CH3OH)]·CH3OH (1), was obtained by the reaction of Cu(NO3)2·3H2O and H2L in methanol solvent (H2L is (E)-4-amino-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide). H2L and compound 1 were characterized by various spectroscopic analyses and the molecular structure of [Cu(HL)(NO3)(CH3OH)]·CH3OH was determined by single-crystal X-ray analysis. The results indicated the product is a mononuclear Cu(II) complex and contains a free NH2 functional group on the structure of the ligand. [Cu(HL)(NO3)(CH3OH)]·CH3OH was used for the preparation of a heterogeneous catalyst by supporting it on functionalized silica gel. The heterogeneous catalyst (Si-Cu) was prepared by an amidification reaction of [Cu(HL)(NO3)(CH3OH)]·CH3OH with functionalized silica gel. The resulting silica-supported catalyst (Si-Cu) was characterized by TGA, FT-IR, EPR, DRS, EDS, XRD, SEM and XPS analyses. Si-Cu was employed in a carbon-carbon coupling reaction and the effects of the amount of Si-Cu and temperature were investigated in the catalytic coupling. The structure of one of the products of the catalytic reactions (C16H22O2, CP1) was determined by single-crystal X-ray analysis, which proved the formation of a C-C bond and the production of di-acetylene by homocoupling of terminal alkyne. This catalytic system is stable and it can be reused for a coupling reaction without a significant change in its catalytic activity.

7.
Dalton Trans ; 51(33): 12686-12697, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939068

RESUMEN

The oxo-bridged hexanuclear iron cluster formulated [FeIII6(µ4-O)2(edteH)2(piv)4(SCN)4]·2MeCN·2H2O (1) (where edteH = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine; piv = pivalic acid) has been synthesized by the reaction of FeCl2·4H2O with edteH4 and piv in the presence of KSCN in CH2Cl2/MeCN. The single crystal X-ray measurements indicated that the cluster is centrosymmetric in structure. The magnetic study demonstrated the presence of very strong antiferromagnetic coupling between the iron centers and the Brillouin fitting showed the best fit with S = 5/2 and g = 1.87. In addition, the water oxidation activity of the cluster has been studied by electrochemical techniques. Electrochemical experiments revealed that the electrode modified by 1 has high efficiency for the oxidation of water and needs an overpotential of 484 mV under a constant current density of 15 mA cm-2 with a Tafel slope of 114 mV dec-1 in neutral media. Experiments indicated that in the presence of 1, a yellow solid film was formed on the electrode surface under the applied electrochemical conditions. This yellow material is likely a compound of iron and oxygen and has a crystalline nature. Our findings revealed that along with the cluster, this compound is active in water oxidation reactions.

8.
Dalton Trans ; 51(32): 12170-12180, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35876690

RESUMEN

In the context of energy storage, the oxygen-evolution reaction (OER, 2H2O → O2 + 4H+ + 4e-) through the water-oxidation reaction is a thermodynamically uphill reaction in overall water splitting. In recent years, copper(II) coordination compounds have been extensively used for the OER. However, challenges remain in finding the mechanism of the OER in the presence of these metal coordination compounds. Herein, the electrochemical OER activity is investigated in the presence of a copper(II) coordination compound at pH ≈ 7. While the investigations on finding true catalysts for the OER are focused on the working electrode, herein, for the first time, the focus is on the decomposition of copper(II) coordination compound (CuL3, L: 2,2'-bipyridine N,N'-dioxide) during the OER on the counter electrode toward the precipitation of copper(I) oxide and metallic Cu.

9.
Photosynth Res ; 154(3): 383-395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35870060

RESUMEN

Water splitting, producing of oxygen, and hydrogen molecules, is an essential reaction for clean energy resources and is one of the challenging reactions for artificial photosynthesis. The Mn4Ca cluster in photosystem II (PS-II) is responsible for water oxidation in natural photosynthesis. Due to this, water oxidation reaction by Mn coordination compounds is vital for mimicking the active core of the oxygen-evolving complex in PS-II. Here, a new dinuclear Mn(II)-semicarbohydrazone coordination compound, [Mn(HL)(µ-N3)Cl]2 (1), was synthesized and characterized by various methods. The structure of compound 1 was determined by single crystal X-ray analysis, which revealed the Mn(II) ions have distorted octahedral geometry as (MnN4OCl). This geometry is created by coordinating of oxygen and two nitrogen donor atoms from semicarbohydrazone ligand, two nitrogen atoms from azide bridges, and chloride anion. Compound 1 was used as a catalyst for electrochemical water oxidation, and the surface of the electrode after the reaction was investigated by scanning electron microscopy, energy dispersive spectrometry, and powder X-ray diffraction analyses. Linear sweep voltammetry (LSV) experiments revealed that the electrode containing 1 shows high activity for chemical water oxidation with an electrochemical overpotential as low as 377 mV. Although our findings showed that the carbon paste electrode in the presence of 1 is an efficient electrode for water oxidation, it could not withstand water oxidation catalysis under bulk electrolysis and finally converted to Mn oxide nanoparticles which were active for water oxidation along with compound 1.


Asunto(s)
Manganeso , Agua , Agua/química , Manganeso/química , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno/química , Nitrógeno
10.
Photosynth Res ; 154(3): 369-381, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35763236

RESUMEN

Water splitting is a promising way to alleviate the energy crisis. In nature, water oxidation is done by a tetranuclear manganese cluster in photosystem II. Therefore, the study of water oxidation by Mn complexes is attractive in water splitting systems. In this report, a new mononuclear Mn(II) complex, MnL2 (HL = (E)-3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide) was prepared and characterized by spectroscopic techniques and single-crystal X-ray diffraction. Crystallographic analysis indicated that the geometry around the Mn(II) ion is distorted octahedral. The MnN4O2 coordination moiety is achieved by bounding of oxygen and two nitrogen donor atoms of two hydrazone ligands. The synthesized complex was also investigated for electrochemical water oxidation using electrochemical techniques, scanning electron microscopy, energy dispersive spectrometry, and PXRD analysis. Linear sweep voltammetry experiment showed that the modified carbon paste electrode by the complex displays high activity for water oxidation reaction with an overpotential of 565 mV at a current density of 10 mA cm-2 and Tafel slope of 105 mV dec-1 in an alkaline solution. It was found that the complex structure finally changes during the reaction and converts to Mn oxide nanoparticles which act as active catalytic species and oxidize the water.


Asunto(s)
Manganeso , Agua , Agua/química , Manganeso/química , Complejo de Proteína del Fotosistema II/metabolismo , Oxidación-Reducción , Ligandos , Oxígeno/química
11.
RSC Adv ; 12(8): 4813-4827, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35425511

RESUMEN

A new mononuclear tungsten coordination compound, [WO2L(CH3OH)] (1), was synthesized by the reaction of WCl6 and H2L (H2L = (E)-4-amino-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide) in methanol. Both the H2L and compound 1 were characterized by elemental analysis and UV-Vis, FT-IR and NMR spectroscopic methods. The molecular structure of compound 1 was also determined by single crystal X-ray analysis which confirmed the compound is a mononuclear coordination compound of cis-dioxidotungsten(vi) containing a free amine functionality on the ligand. Compound 1 was supported on propionyl chloride-functionalized silica gel by amidification reaction to obtain a heterogeneous catalyst. The obtained heterogeneous catalyst was characterized by FT-IR spectroscopy, thermal gravimetric analysis (TGA), diffuse-reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) and its catalytic activity was investigated in the epoxidation of olefins with hydrogen peroxide under solvent free conditions. The catalyst was successfully recovered several times and the recovered catalyst was also characterized by various methods including FT-IR, DRS, TGA, SEM and EDX analyses. The results indicated this heterogeneous catalytic system is an effective and selective catalyst for epoxidation of olefins and can be reused several times without significant change in its catalytic activity.

12.
Dalton Trans ; 51(1): 220-230, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34881752

RESUMEN

A cobalt coordination compound with azo-ligand linkers combined with linked bisulfonate moieties has been argued to be an efficient catalyst for the oxygen-evolution reaction (OER) (H.-T. Shi, X.-X. Li, F.-H. Wu and W.-B. Yu, Dalton Trans., 2017, 46, 16321.). In the previously published report, this cobalt compound (compound 1) was believed to display a high turnover frequency (5 s-1) at η = 720 mV at pH 9. Herein, the OER in the presence of compound 1 is reinvestigated. The nanosized oxide-based particles formed after the OER in the presence of compound 1 were tracked by electrochemical methods, scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), X-ray diffraction studies (XRD), (High-resolution) transmission electron microscopy ((HR)TEM), Raman spectroscopy, X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). Based on these experiments, it is proposed that a candidate for the true catalyst of the OER in the presence of compound 1 is cobalt oxide. During the OER and using chronoamperometry, the oxidation state of Co ions for the formed Co oxide is (III), but after consecutive CVs the oxidation states of Co ions for the formed Co oxide are (II) and (III). The results shed new light on the role of Co oxide nanoparticles formed in the presence of this Co coordination compound during the OER. Our experimental data also show that for the OER in the presence of a homogeneous (pre)catalyst, careful analyses to find the role of metal oxides are necessary for informed progress. The present findings also might help to find the mechanism of the OER in the presence of coordination compounds.

13.
Anal Biochem ; 627: 114263, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34052198

RESUMEN

In this work, the bio sorption of mercury ion by garlic bio-adsorbent was studied. A batch and a continuous up-flow fixed-bed column system were used in this report. Differential pulse voltammetry was used to detecting the amount of mercury ion. Using Differential pulse voltammetry prevents the production of carcinogenic mercury vapor. In the batch system, various doses of bio-adsorbent were investigated. After that, the experimental data was fitted using Langmuir and Freundlich models. The experimental data were also fitted to the Thomas, Bohart-Adams, and Yan models for the continuous mode in a fixed bed of garlic bio-adsorbent. The maximum adsorption capacity estimated by the Thomas models was 23.5 mg g-1 and τ was 135.3 min. This adsorbent is also suitable for absorbing mercury from a real-life well water sample. It is renewable and can be used to absorb mercury several times.


Asunto(s)
Ajo/química , Mercurio/química , Aguas Residuales/química , Adsorción , Técnicas Electroquímicas/métodos , Humanos , Iones/química , Cinética , Modelos Teóricos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
14.
Inorg Chem ; 60(2): 982-994, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33404233

RESUMEN

For the first time, square planar Pd(II) complexes of hydrazone ligands have been investigated as the emissive components of light-emitting electrochemical cells (LECs). The neutral transition metal complex, [Pd(L1)2]·2CH3OH (1), (HL1 = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinhydrazide), was prepared and structurally characterized. Complex 1 displays quasireversible redox properties and is emissive at room temperature in solution with a λmax of 590 nm. As a result, it was subsequently employed as the emissive material of a single-layer LEC with configuration FTO/1/Ga/In, where studies reveal that it has a yellow color with CIE(x, y) = (0.33, 0.55), a luminance of 134 cd cm-2, and a turn-on voltage of 3.5 V. Protonation of the pendant pyridine nitrogen atoms of L1 afforded a second ionic complex [Pd(L1H)2](ClO4)2 (2) which is also emissive at room temperature with a λmax of 611 nm, resulting in an orange LEC with CIE(x, y) = (0.43, 0.53). The presence of mobile anions and cations in the second inorganic transition metal complex resulted in more efficient charge injection and transport which significantly improved the luminance and turn-on voltage of the device to 188.6 cd cm-2 and 3 V, respectively. This study establishes Pd(II) hydrazone complexes as a new class of materials whose emissive properties can be chemically tuned and provides proof-of-concept for their use in LECs, opening up exciting new avenues for potential applications in the field of solid state lighting.

15.
AMB Express ; 10(1): 111, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514786

RESUMEN

The use of metal complexes to reduce or inhibit virulence factors of Pseudomonas aeruginosa is a promising strategy for the management and control of infections caused by this multidrug-resistant pathogen. The present study aimed to investigate the anti-quorum sensing activity of sub-minimum inhibitory concentrations (sub-MIC) of copper(II) sulfate pentahydrate-curcumin complex (Cu-CUR), iron(III) nitrate nonahydrate -curcumin complex (Fe-CUR), zinc(II) chloride-curcumin complex (Zn-CUR) and free curcumin (free-CUR) against P. aeruginosa PAO1. Metal-CUR complexes were synthesized and characterized by spectroscopic methods. The effect of sub-MIC (1/4 and 1/16 MIC) concentrations of metal-CUR complexes and free-CUR on cell growth, biofilm formation, motility, alginate and pyocyanin production, H2O2 susceptibility and expression of lasI and lasR genes in PAO1 was determined. MIC of metal-CUR complexes and free-CUR was determined as 62.5 and 125 µg/ml, respectively. Metal-CUR complexes at concentration of 62.5 µg/ml significantly reduced the cell growth to 1.5%-3.3%. Although we did not measure the anti-QS activity of metal-CUR complexes directly against PAO1, they indicated anti-QS activity in C. violaceum CV026. Copper-CUR complex at the concentration of 1/4 MIC showed the greatest inhibitory effect on swarming and twitching motilities, biofilm formation, alginate and pyocyanin production, sensitivity to H2O2 and reduction in the expression levels of lasI and lasR genes (P < 0.001). Considering the biological effects of Cu-CUR complex and its inhibitory activity on virulence factors, it may be used as an effective compound for treatment and control of infections caused by P. aeruginosa.

16.
ACS Omega ; 5(22): 13344-13357, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32548521

RESUMEN

A hydrazone ligand, (E)-6-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinyl)nicotinohydrazide (H2L), was synthesized and characterized by spectroscopic methods. The reaction of H2L with CuCl2·2H2O in methanol gave Cu(II) coordination compound, [Cu(HL')(Cl)]·CH3OH (1), which was characterized by elemental analysis and spectroscopic methods (Fourier transform infrared (FT-IR) and UV-vis). The structure of 1 was also determined by single-crystal X-ray analysis. Structural studies confirmed the formation of esteric group during the synthesis of 1. Compound 1 was immobilized on 3-aminopropyltriethoxysilane (APTS)-functionalized silica gel through the amidification reaction and the obtained heterogeneous coordination compound was utilized as a catalyst for the three-component azide-epoxide-alkyne cycloaddition reaction in water as a green solvent. The structural properties of the heterogeneous catalyst were characterized by a combination of FT-IR, UV-vis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analyses. The effect of the amount of catalyst and temperature on the cycloaddition reaction was studied, and the obtained 1,2,3-triazoles were characterized by spectroscopic studies and single-crystal X-ray analysis. The catalytic investigations revealed that this catalytic system has high activity in the synthesis of ß-hydroxy-1,2,3-triazoles. It was also found that the aromatic and aliphatic substituents on the alkyne and epoxide together with the reaction temperature have considerable effects on the activity and regioselectivity of this catalytic system.

17.
Dalton Trans ; 49(17): 5597-5605, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32282002

RESUMEN

Herein, we report the synthesis, characterization, crystal structure, density functional theory calculations, and water-oxidizing activity of a pivalate Mn-Ca cluster. All of the manganese atoms in the cluster are Mn(iv) ions and have a distorted MnO6 octahedral geometry. Three Mn(iv) ions together with a Ca(ii) ion and four-oxido groups form a cubic Mn3CaO4 unit which is similar to the Mn3CaO4 cluster in the water-oxidizing complex of Photosystem II. Using scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, extended X-ray absorption spectroscopy, chronoamperometry, and electrochemical methods, a conversion into nano-sized Mn-oxide is observed for the cluster in the water-oxidation reaction.


Asunto(s)
Biocatálisis , Materiales Biomiméticos/química , Calcio/química , Manganeso/química , Complejo de Proteína del Fotosistema II/metabolismo , Agua/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
18.
AMB Express ; 10(1): 82, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32333295

RESUMEN

Quorum sensing (QS) inhibition by metal-antibiotic complexes is a promising strategy for the management and control of multidrug resistant Pseudomonas aeruginosa infections. We investigated the anti-quorum sensing activity of sub-minimum inhibitory concentration (sub-MIC) of copper(II) sulfate pentahydrate-ciprofloxacin (Cu-CIP) complex and free ciprofloxacin (free-CIP) against P. aeruginosa PAO1. Copper-CIP complex was synthesized and its characterization was assessed using spectroscopic methods and single crystal X-ray analysis. The effect of sub-MIC (1/4 and 1/16 MIC) concentrations of Cu-CIP and free-CIP on cell growth, biofilm formation, motility, alginate and pyocyanin production, H2O2 susceptibility and expression of QS circuit genes lasI and lasR in PAO1 was determined. Minimum inhibitory concentration of Cu-CIP complex and free-CIP was determined as 0.125 µg/ml. Copper-CIP complex did not show significant effect on the cell growth at concentrations of 1/4 and 1/16 MIC. However, sub-MIC concentrations (1/4 and 1/16 MIC) of Cu-CIP showed the significant reduction in violacein production, motility, biofilm formation, alginate and pyocyanin production and sensitivity to H2O2 in a concentration dependent manner (P < 0.001). Copper-CIP at the concentration of 1/4 MIC showed the greatest reduction in lasI and lasR transcriptional expression (89.5% and 96.2% respectively). Considering the biological effects of Cu-CIP complex and its inhibitory activity on QS related virulence traits at low concentrations (0.03 and 0.007 µg/ml), it may be used as an effective approach in the management of infections caused by P. aeruginosa.

19.
Dalton Trans ; 48(36): 13799-13812, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31482886

RESUMEN

Two new trinuclear manganese complexes, [Mn3(L1)(µ-OCH3)2(N3)2]·CH3OH (1) and [Mn3(L2)(µ-OCH3)2(N3)2]·CH3OH (2), have been obtained from the reaction of Mn(OAc)2 4H2O, NaN3 and the preformed N6O4-donor H4L1 or H4L2 compartmental ligands, which are synthesized via Schiff base condensation of pentaethylenehexamine with 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehye, respectively. Complexes 1 and 2 have been characterized by spectroscopic methods and single-crystal X-ray analysis. The structural studies indicate that both 1 and 2 are mixed-valence complexes containing angular Mn(iii)-Mn(ii)-Mn(iii) cores in which the metal centers are connected to each other by phenoxido and methoxido bridging groups. The coordination environment around the manganese ions is analogous in both complexes, but for a change in the direction of the Jahn-Teller distortion around the external Mn(iii) ions when going from 1 to 2, which is mainly attributed to the steric effect of different substituents on the phenyl rings of the ligands. The analysis of the magnetic susceptibility data indicates the presence of antiferromagnetic intramolecular coupling in both complexes, but the interaction in 1 was found to be nearly one order of magnitude weaker than that in 2. This fact is rationalized on the basis of the different orientation of the Jahn-Teller distortion, which modifies the magnetic exchange pathway through the phenoxido bridges from the equatorial-axial connection type observed in 1 to the axial-axial linkages displayed by 2.

20.
Dalton Trans ; 48(30): 11421-11432, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31290507

RESUMEN

The electrostatic self-assembly reaction of the [Cu(HL)]2+ cation, where HL = 2-(2-aminoethylamino) ethanol, and the N3- or [Fe(CN)6]4- anion leads to the formation of two coordination polymers with the general formula of [Cu6(µ1,1-N3)6(µ1,3-N3)2(µ1,1,3-N3)2(µ1,1,1,3-N3)2(HL)2]n (1) and {[Cu(HL)]2[Fe(CN)6]·H2O}n (2), respectively. The resulting compounds have been structurally characterized by a single-crystal X-ray diffraction technique. Compound 1 possesses a rare 3D structure. It contains centrosymmetric hexanuclear repeating units, which act as six-connected nodes in the final network and copper(ii) ions are joined together by azide anions with four different types of bridging modes, µ1,1, µ1,1,3, µ1,1,1,3, and µ1,3. The structure of compound 2 is a 2D heterometallic CuII/FeII layer in which the [Cu(HL)]2 nodes and the octahedral [Fe(CN)6]4- linkers are joined by µ2- and unusual µ3-CN bridging modes. Detailed static and dynamic magnetic analyses of 1 reveal a dominant ferromagnetic intracluster interaction and a ferromagnetic 3D ordering transition below Tc = 5 K. The variable temperature magnetic susceptibility measurements of compound 2 show a very weak ferromagnetic coupling between the nearest Cu(ii) ions. Also, EPR spectroscopy of these compounds has been investigated in the solid state. Nanocrystals of compound 2 have also been synthesized by a sonochemical process under different reaction conditions. The results show that the crystallinity degree and uniform distribution of nanosheets are inversely dependent on the irradiation time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA