Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JAMA Oncol ; 10(6): 773-783, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38780929

RESUMEN

Importance: The association between body composition (BC) and cancer outcomes is complex and incompletely understood. Previous research in non-small-cell lung cancer (NSCLC) has been limited to small, single-institution studies and yielded promising, albeit heterogeneous, results. Objectives: To evaluate the association of BC with oncologic outcomes in patients receiving immunotherapy for advanced or metastatic NSCLC. Design, Setting, and Participants: This comprehensive multicohort analysis included clinical data from cohorts receiving treatment at the Dana-Farber Brigham Cancer Center (DFBCC) who received immunotherapy given alone or in combination with chemotherapy and prospectively collected data from the phase 1/2 Study 1108 and the chemotherapy arm of the phase 3 MYSTIC trial. Baseline and follow-up computed tomography (CT) scans were collected and analyzed using deep neural networks for automatic L3 slice selection and body compartment segmentation (skeletal muscle [SM], subcutaneous adipose tissue [SAT], and visceral adipose tissue). Outcomes were compared based on baseline BC measures or their change at the first follow-up scan. The data were analyzed between July 2022 and April 2023. Main Outcomes and Measures: Hazard ratios (HRs) for the association of BC measurements with overall survival (OS) and progression-free survival (PFS). Results: A total of 1791 patients (878 women [49%]) with NSCLC were analyzed, of whom 487 (27.2%) received chemoimmunotherapy at DFBCC (DFBCC-CIO), 825 (46.1%) received ICI monotherapy at DFBCC (DFBCC-IO), 222 (12.4%) were treated with durvalumab monotherapy on Study 1108, and 257 (14.3%) were treated with chemotherapy on MYSTIC; median (IQR) ages were 65 (58-74), 66 (57-71), 65 (26-87), and 63 (30-84) years, respectively. A loss in SM mass, as indicated by a change in the L3 SM area, was associated with worse oncologic outcome across patient groups (HR, 0.59 [95% CI, 0.43-0.81] and 0.61 [95% CI, 0.47-0.79] for OS and PFS, respectively, in DFBCC-CIO; HR, 0.74 [95% CI, 0.60-0.91] for OS in DFBCC-IO; HR, 0.46 [95% CI, 0.33-0.64] and 0.47 [95% CI, 0.34-0.64] for OS and PFS, respectively, in Study 1108; HR, 0.76 [95% CI, 0.61-0.96] for PFS in the MYSTIC trial). This association was most prominent among male patients, with a nonsignificant association among female patients in the MYSTIC trial and DFBCC-CIO cohorts on Kaplan-Meier analysis. An increase of more than 5% in SAT density, as quantified by the average CT attenuation in Hounsfield units of the SAT compartment, was associated with poorer OS in 3 patient cohorts (HR, 0.61 [95% CI, 0.43-0.86] for DFBCC-CIO; HR, 0.62 [95% CI, 0.49-0.79] for DFBCC-IO; and HR, 0.56 [95% CI, 0.40-0.77] for Study 1108). The change in SAT density was also associated with PFS for DFBCC-CIO (HR, 0.73; 95% CI, 0.54-0.97). This was primarily observed in female patients on Kaplan-Meier analysis. Conclusions and Relevance: The results of this multicohort study suggest that loss in SM mass during systemic therapy for NSCLC is a marker of poor outcomes, especially in male patients. SAT density changes are also associated with prognosis, particularly in female patients. Automated CT-derived BC measurements should be considered in determining NSCLC prognosis.


Asunto(s)
Composición Corporal , Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Femenino , Masculino , Inmunoterapia/métodos , Persona de Mediana Edad , Anciano , Supervivencia sin Progresión , Adulto
2.
Inorg Chem ; 60(21): 15997-16007, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450017

RESUMEN

The chemical reactivity of NO and its role in several biological processes seem well established. Despite this, the chemical reduction of •NO toward HNO has been historically discarded, mainly because of the negative reduction potential of NO. However, this value and its implications are nowadays under revision. The last reported redox potential, E'(NO,H+/HNO), at micromolar and picomolar concentrations of •NO and HNO, respectively, is between -0.3 and 0 V at pH 7.4. This potential implies that the one-electron-reduction process for NO is feasible under biological conditions and could be promoted by well-known biological reductants with reduction potentials of around -0.3 to -0.5 V. Moreover, the biologically compatible chemical reduction of •NO (nonenzymatic), like direct routes to HNO by alkylamines, aromatic and pseudoaromatic alcohols, thiols, and hydrogen sulfide, has been extensively explored by our group during the past decade. The aim of this work is to use a kinetic modeling approach to analyze electrochemical HNO measurements and to report for the first-time direct reaction rate constants between •NO and moderate reducing agents, producing HNO. These values are between 5 and 30 times higher than the previously reported keff values. On the other hand, we also showed that reaction through successive attack by two NO molecules to biologically compatible compounds could produce HNO. After over 3 decades of intense research, the •NO chemistry is still there, ready to be discovered.


Asunto(s)
Sulfuro de Hidrógeno
3.
J Am Chem Soc ; 139(41): 14483-14487, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28926245

RESUMEN

Azanone (nitroxyl, HNO) is a highly reactive compound whose biological role is still a matter of debate. One possible route for its formation is NO reduction by biological reductants. These reactions have been historically discarded due to the negative redox potential for the NO,H+/HNO couple. However, the NO to HNO conversion mediated by vitamins C, E, and aromatic alcohols has been recently shown to be feasible from a chemical standpoint. Based on these precedents, we decided to study the reaction of NO with thiols as potential sources of HNO. Using two complementary approaches, trapping by a Mn porphyrin and an HNO electrochemical sensor, we found that under anaerobic conditions aliphatic and aromatic thiols (as well as selenols) are able to convert NO to HNO, albeit at different rates. Further mechanistic analysis using ab initio methods shows that the reaction between NO and the thiol produces a free radical adduct RSNOH•, which reacts with a second NO molecule to produce HNO and a nitrosothiol. The nitrosothiol intermediate reacts further with RSH to produce a second molecule of HNO and RSSR, as previously reported.

4.
J Am Chem Soc ; 137(14): 4720-7, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25773518

RESUMEN

The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical.


Asunto(s)
Alcoholes/química , Ácido Ascórbico/química , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Tirosina/química , Alcoholes/metabolismo , Animales , Ácido Ascórbico/metabolismo , Bovinos , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Oxidación-Reducción , Tirosina/metabolismo
5.
Acc Chem Res ; 47(10): 2907-16, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25238532

RESUMEN

Azanone ((1)HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angeli's salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO. This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯. Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols. Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device.


Asunto(s)
Metaloporfirinas/química , Metaloporfirinas/metabolismo , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Técnicas Electroquímicas , Óxido Nítrico/química , Óxido Nítrico/metabolismo
6.
Inorg Chem ; 53(19): 10456-62, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25215611

RESUMEN

Carbon monoxide releasing molecules (CORMs) have important bactericidal, anti-inflammatory, neuroprotective, and antiapoptotic effects and can be used as tools for CO physiology experiments, including studies on vasodilation. In this context, a new class of CO releasing molecules, based on pentachlorocarbonyliridate(III) derivative have been recently reported. Although there is a growing interest in the characterization of protein-CORMs interactions, only limited structural information on CORM binding to protein and CO release has been available to date. Here, we report six different crystal structures describing events ranging from CORM entrance into the protein crystal up to the CO release and a biophysical characterization by isothermal titration calorimetry, Raman microspectroscopy, and molecular dynamics simulations of the complex between a pentachlorocarbonyliridate(III) derivative and hen egg white lysozyme, a model protein. Altogether, the data indicate the formation of a complex in which the ligand can bind to different sites of the protein surface and provide clues on the mechanism of adduct formation and CO release.


Asunto(s)
Monóxido de Carbono/química , Iridio/química , Muramidasa/química , Compuestos Organometálicos/química , Monóxido de Carbono/metabolismo , Iridio/metabolismo , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo
7.
Nat Commun ; 5: 4381, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25023795

RESUMEN

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Sulfuro de Hidrógeno/metabolismo , Óxido Nítrico/farmacología , Óxidos de Nitrógeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Humanos , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
8.
Inorg Chem ; 53(14): 7351-60, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25001488

RESUMEN

Azanone ((1)HNO, nitroxyl) is a highly reactive molecule with interesting chemical and biological properties. Like nitric oxide (NO), its main biologically related targets are oxygen, thiols, and metalloproteins, particularly heme proteins. As HNO dimerizes with a rate constant between 10(6) and 10(7) M(-1) s(-1), reactive studies are performed using donors, which are compounds that spontaneously release HNO in solution. In the present work, we studied the reaction mechanism and kinetics of two azanone donors Angelís Salt and toluene sulfohydroxamic acid (TSHA) with eight different Mn porphyrins as trapping agents. These porphyrins differ in their total peripheral charge (positively or negatively charged) and in their Mn(III)/Mn(II) reduction potential, showing for each case positive (oxidizing) and negative (reducing) values. Our results show that the reduction potential determines the azanone donor reaction mechanism. While oxidizing porphyrins accelerate decomposition of the donor, reducing porphyrins react with free HNO. Our results also shed light into the donor decomposition mechanism using ab initio methods and provide a thorough analysis of which MnP are the best candidates for azanone trapping and quantification experiments.


Asunto(s)
Hierro/química , Manganeso/química , Óxidos de Nitrógeno/química , Porfirinas/química , Cinética , Oxidación-Reducción
9.
Anal Chem ; 85(21): 10262-9, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23952708

RESUMEN

Azanone (HNO, nitroxyl) is a highly reactive and short-lived compound with intriguing and highly relevant properties. It has been proposed to be a reaction intermediate in several chemical reactions and an in vivo, endogenously produced key metabolite and/or signaling molecule. In addition, its donors have important pharmacological properties. Therefore, given its relevance and elusive nature (it reacts with itself very quickly), the development of reliable analytical methods for quantitative HNO detection is in high demand for the advancement of future research in this area. During the past few years, several methods were developed that rely on chemical reactions followed by mass spectrometry, high-performance liquid chromatography, UV-vis, or fluorescence-trapping-based methodologies. In this work, our recently developed HNO-sensing electrode, based on the covalent attachment of cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl] porphyrin [Co(P)] to a gold electrode, has been thoroughly characterized in terms of sensibility, accuracy, time-resolved detection, and compatibility with complex biologically compatible media. Our results show that the Co(P) electrode: (i) allows time-resolved detection and kinetic analysis of the electrode response (the underlying HNO-producing reactions can be characterized) (ii) is able to selectively detect and reliably quantify HNO in the 1-1000 nM range, and (iii) has good biological media compatibility (including cell culture), displaying a lack of spurious signals due to the presence of O2, NO, and other reactive nitrogen and oxygen species. In summary, the Co(P) electrode is to our knowledge the best prospect for use in studies investigating HNO-related chemical and biological reactions.


Asunto(s)
Técnicas Electroquímicas/métodos , Óxidos de Nitrógeno/análisis , Cromatografía Líquida de Alta Presión , Fluorescencia , Cinética , Límite de Detección , Espectrometría de Masas , Espectrofotometría Ultravioleta
10.
Biochim Biophys Acta ; 1834(9): 1722-38, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23470499

RESUMEN

In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Asunto(s)
Simulación por Computador , Globinas/química , Globinas/metabolismo , Animales , Humanos , Ligandos , Teoría Cuántica
11.
J Inorg Biochem ; 118: 134-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23141500

RESUMEN

A group of Piloty's acid (N-hydroxybenzenesulfonamide) derivatives were synthesized and fully characterized in order to assess the rates and pH of HNO (azanone, nitroxyl) donation in aqueous media. The derivatives, with electron-withdrawing and -donating substituents include methyl, nitro, fluoro, tri-isopropyl, trifluoromethyl and methoxy groups. The most interesting modulation observed is the change in pH range in which the compounds are able to donate HNO. UV-visible kinetic measurements at different pH values were used to evaluate the decomposition rate of the donors. A novel technique based on electrochemical measurements using a Co-porphyrin sensor was used to assess the release of HNO as a function of pH, by direct measurement of [HNO]. The results were contrasted with DFT calculations in order to understand the electronic effects exerted by the ring substituents, which drastically modify the pH range of donation. For example, while Piloty's acid donates HNO from pH 9.3, the corresponding fluoro derivative starts donating at pH 4.0.


Asunto(s)
Ácidos Hidroxámicos/química , Óxidos de Nitrógeno/química , Sulfonamidas/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Ácidos Hidroxámicos/síntesis química , Cinética , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Espectrofotometría Ultravioleta , Sulfonamidas/síntesis química , Termodinámica
12.
J Phys Chem B ; 115(46): 13771-80, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21985496

RESUMEN

Protoglobin is the first globin found in Archaea. Its biological role is still unknown, although this protein can bind O(2), CO, and NO reversibly in vitro. The X-ray structure of Methanosarcina acetivorans protoglobin (MaPgb) has shown that access of ligands to the heme, which is completely buried within the protein matrix, can be granted by two apolar tunnels, which are mainly defined by helices G and B (tunnel 1), and helices B and E (tunnel 2). Here we analyze the structural and dynamical behavior of MaPgb through molecular dynamics and computational techniques aimed at shedding light on distinctive features of ligand migration through the tunnels that may be linked to functionality. While tunnel 2 is found to be accessible to diatomic ligands in both deoxygenated and oxygenated forms of the protein, the accessibility of tunnel 1 is controlled through the synergistic effect of both the protein dimeric state and the presence of the heme-bound ligand. Thus, dimerization mainly affects the spatial arrangement of helix G, which influences the shape of tunnel 1. Ligand accessibility through this tunnel is regulated by Phe(145)G8, which can adopt open and closed conformations. Noteworthy, the ratio between open and closed states is modulated by protein dimerization and more strikingly by ligand binding. In particular, sensing of the ligand is mediated by Phe(93)E11, and the steric hindrance between Phe(93)E11 and the heme-bound ligand alters the structural and dynamical behavior of helices B and E, which facilitates opening of tunnel 1. This functional mechanism provides a basis to understand the finding that ligation favors fast rebinding from ligand binding kinetic to MaPgb. Finally, it also suggests that MaPgb might be physiologically involved in a ligand-controlled bimolecular chemical process.


Asunto(s)
Globinas/química , Ligandos , Methanosarcina/metabolismo , Cristalografía por Rayos X , Dimerización , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
13.
Inorg Chem ; 50(6): 2334-45, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21322575

RESUMEN

A new family of compounds is presented as potential carbon monoxide releasing molecules (CORMs). These compounds, based on tetrachlorocarbonyliridate(III) derivatives, were synthesized and fully characterized by X-ray diffraction, electrospray mass spectrometry, IR, NMR, and density functional theory calculations. The rate of CO release was studied via the myoglobin assay. The results showed that the rate depends on the nature of the sixth ligand, trans to CO, and that a significant modulation on the release rate can be produced by changing the ligand. The reported compounds are soluble in aqueous media, and the rates of CO release are comparable with those for known CORMs, releasing CO at a rate of 0.03-0.58 µM min(-1) in a 10 µM solution of myoglobin and 10 µM of the complexes.


Asunto(s)
Monóxido de Carbono/química , Iridio/química , Compuestos Organometálicos/química , Agua/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Solubilidad
14.
Biochim Biophys Acta ; 1814(8): 1054-64, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20797453

RESUMEN

Since proteins are dynamic systems in living organisms, the employment of methodologies contemplating this crucial characteristic results fundamental to allow revealing several aspects of their function. In this work, we present results obtained using classical mechanical atomistic simulation tools applied to understand the connection between protein dynamics and ligand migration. Firstly, we will present a review of the different sampling schemes used in the last years to obtain both ligand migration pathways and the thermodynamic information associated with the process. Secondly, we will focus on representative examples in which the schemes previously presented are employed, concerning the following: i) ligand migration, tunnels, and cavities in myoglobin and neuroglobin; ii) ligand migration in truncated hemoglobin members; iii) NO escape and conformational changes in nitrophorins; iv) ligand selectivity in catalase and hydrogenase; and v) larger ligand migration: the P450 and haloalkane dehalogenase cases. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.


Asunto(s)
Simulación por Computador , Proteínas/química , Sitios de Unión , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular
15.
J Phys Chem B ; 114(25): 8536-43, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20524694

RESUMEN

The chemical properties of heme proteins largely reflect the electronic properties of their heme group. Often, the porphyrin ring of the heme exhibits significant distortions from its isolated structure, but the impact of these distortions on the chemical properties of the heme is yet uncertain. A systematic study focused on the effects of the distortion of the macrocycle on the binding affinity for oxygen is presented. The results show that out-of-plane distortions decrease the binding affinity, while in-plane distortions can increase or decrease it. Among in-plane distortions, only the breathing mode, which involves the symmetric compression-expansion of the porphyrin ring, strongly modulates the binding affinity. These findings shed light into the peculiar binding affinity of Methanosarcina acetivorans protoglobin, a protein that contains a highly distorted heme. Overall, the results highlight that in-plane distortions might be exploited by certain classes of heme proteins to modulate the ligand affinity.


Asunto(s)
Proteínas Arqueales/química , Hemo/química , Hemoproteínas/química , Oxígeno/química , Methanosarcina/metabolismo , Porfirinas/química , Teoría Cuántica
16.
J Am Chem Soc ; 132(3): 989-95, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20043668

RESUMEN

Nitroxyl (HNO/NO(-)) heme-adducts have been postulated as intermediates in a variety of catalytic processes carried out by different metalloenzymes. Hence, there is growing interest in obtaining and characterizing heme model nitroxyl complexes. The one-electron chemical reduction of the {FeNO}(7) nitrosyl derivative of Fe(III)(TFPPBr(8))Cl, Fe(II)(TFPPBr(8))NO (1) (TFPPBr(8) = 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-[Tetrakis-(pentafluorophenyl)]porphyrin) with cobaltocene yields the significantly stable {FeNO}(8) complex, [Co(C(5)H(5))(2)](+)[Fe(TFPPBr(8))NO](-) (2). Complex 2 was isolated and characterized by UV-vis, FTIR, (1)H and (15)N NMR spectroscopies. In addition, DFT calculations were performed to get more insight into the structure of 2. According to the spectroscopic and DFT results, we can state unequivocally that the surprisingly stable complex 2 is the elusive {FeNO}(8) species. Both experimental and computational data allow to assign the electronic structure of 2 as intermediate between Fe(II)NO(-) and Fe(I)NO, which is contrasted with the predominant Fe(II)NO(-) character of known nonheme {FeNO}(8) complexes. The enhanced stability achieved for a heme model {FeNO}(8) is expected to allow further studies related to the reactivity of this elusive species.


Asunto(s)
Simulación por Computador , Compuestos Férricos/química , Compuestos Ferrosos/química , Hemo/química , Modelos Químicos , Óxidos de Nitrógeno/química , Compuestos Férricos/síntesis química , Compuestos Ferrosos/síntesis química , Porfirinas/química
17.
J Inorg Biochem ; 102(1): 70-6, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17723244

RESUMEN

The effect of beta-substituents (-NO2, -Br, -OCH3) in the reactivity of Fe(II) and Fe(III) porphyrins is studied by means of density functional theory (DFT) calculations. The binding of nitric oxide, carbon monoxide and dioxygen (NO, CO, O2) was explored due to the relevance of their interactions in the chemistry of heme proteins and in biomimetic catalysis. The binding capability (BC) of the porphyrins was found to be strongly modulated both by the donor and attractor substituents used in the work. Unexpectedly, we found that the BC of Fe(II) porphyrins is mainly decreased for the diatomic ligands, when both donor or withdrawing substituents were considered. This effect was particularly significant when the ligand was oxygen. The correlation of Fe-X and X-O (X=N, C, O) bond distances is explained in terms of backdonation effects.


Asunto(s)
Compuestos Ferrosos/química , Metaloporfirinas/química , Simulación por Computador , Hemo/química , Estructura Molecular , Termodinámica
18.
Proteins ; 68(2): 480-7, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17469189

RESUMEN

The binding of diatomic ligands, such as O(2), NO, and CO, to heme proteins is a process intimately related with their function. In this work, we analyzed by means of a combination of classical Molecular Dynamics (MD) and Hybrid Quantum-Classical (QM/MM) techniques the existence of multiple conformations in the distal site of heme proteins and their influence on oxygen affinity regulation. We considered two representative examples: soybean leghemoglobin (Lba) and Paramecium caudatum truncated hemoglobin (PcHb). The results presented in this work provide a molecular interpretation for the kinetic, structural, and mutational data that cannot be obtained by assuming a single distal conformation.


Asunto(s)
Hemoglobinas/química , Leghemoglobina/química , Leghemoglobina/metabolismo , Oxígeno/metabolismo , Paramecium caudatum/metabolismo , Proteínas de Plantas/química , Proteínas Protozoarias/química , Animales , Sitios de Unión , Simulación por Computador , Hemoglobinas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Plantas/metabolismo , Conformación Proteica , Proteínas Protozoarias/metabolismo , Glycine max/metabolismo , Hemoglobinas Truncadas
19.
Phys Chem Chem Phys ; 8(48): 5611-28, 2006 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17149482

RESUMEN

Heme proteins are found in all living organisms, and perform a wide variety of tasks ranging from electron transport, to the oxidation of organic compounds, to the sensing and transport of small molecules. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of several relevant issues in heme proteins chemistry: (i) conformational analysis, ligand migration, and solvation effects studied using classical molecular dynamics simulations; (ii) electronic structure and spin state energetics of the active sites explored using quantum-mechanics (QM) methods; (iii) the interaction of heme proteins with small ligands studied through hybrid quantum mechanics-molecular mechanics (QM-MM) techniques; (iv) and finally chemical reactivity and catalysis tackled by a combination of quantum and classical tools.


Asunto(s)
Simulación por Computador , Hemoproteínas/química , Modelos Químicos , Teoría Cuántica , Enlace de Hidrógeno , Ligandos , Conformación Proteica
20.
Proteins ; 62(3): 641-8, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16432879

RESUMEN

The nerve tissue hemoglobin of Cerebratulus lacteus (CerHb) is the smallest naturally occurring known hemoglobin. Stabilization of the diatomic bound species (e.g., O(2)) is achieved through a network of hydrogen bonds based on three key residues TyrB10, GlnE7, and ThrE11. The first two residues are typically associated in hemoglobins with enhanced O(2) affinity, related to hydrogen bond stabilization of the heme-bound O(2) resulting in a decrease of the ligand dissociation rates. In contrast to the above observations, the affinity of CerHb for O(2) is only moderate, and the rate of O(2) dissociation is unexpectedly high. To gain insight on the diverse molecular mechanisms controlling ligand affinities, we have analyzed w.t. CerHb and its ThrE11-->Val mutant by means of joint molecular dynamics and quantum mechanics simulation techniques, complementing recent site-directed mutagenesis experiments. Our results suggest that the observed O(2) dissociation rates can only be explained through a dynamic equilibrium between high and low affinity states of the w.t. CerHb heme distal site.


Asunto(s)
Hemo/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Sustitución de Aminoácidos , Animales , Anélidos/química , Sitios de Unión , Hemo/metabolismo , Hemoglobinas/genética , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxihemoglobinas/química , Oxihemoglobinas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA