Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(2): e0229254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32074129

RESUMEN

Activins are members of the transforming growth factor-ß (TGF-ß) superfamily of signaling proteins and were originally identified as components of follicular fluid. The proteins are now known to play critical roles in numerous normal and pathological processes and conditions, but less is clear about the relationships between their gene organization and protein variant expression and structure. The four human and mouse activin (Act) genes, termed INHßA, INHßB, INHßC and INHßE, differ in exon numbers. Human INHßA is the most complex with 7 exons and elicits production of three Act A variants (Act A X1, X2 and X3) differing in their pro-region, as we showed previously. Here we further analyzed the mouse INHßA gene and found that its 4 exons encode for a single open reading frame (mouse Act A), corresponding to the shortest human Act A X3 variant. Activins are synthesized and secreted as large complexes made of a long pro-region and a short mature C- terminal ligand and are known to interact with the heparan sulfate (HS) chains of cell surface and matrix proteoglycans. Human Act A X1 and X2 variants do have a HS-binding domain (HBD) with Cardin/Weintraub traits in their pro-region, while the X3 variant does not as shown previously. We found that the mouse Act A lacks a HBD as well. However, we identified a typical HBD in the pro-region of both mouse and human Act B, and synthetic peptides containing that domain interacted with immobilized HS and cell surface with nanomolar affinity. In sum, human and mouse Act A genes elicit expression of different variant sets, while there is concordance in Act B protein expression, reflecting possible evolutionary diversity in function of, and responses to, these signaling proteins in the two species.


Asunto(s)
Activinas/metabolismo , Variación Genética , Heparitina Sulfato/metabolismo , Proteínas Mutantes/metabolismo , Activinas/química , Activinas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Unión Proteica , Conformación Proteica , Homología de Secuencia
2.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847127

RESUMEN

The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes. Uniquely, progenitor cells reside near the articular surface, proliferate, undergo chondrogenesis, and mature into hypertrophic chondrocytes. During the past decades, there has been a growing interest in the molecular mechanisms by which the TMJ develops and acquires its unique structural and functional features. Indian hedgehog (Ihh), which regulates skeletal development including synovial joint formation, also plays pivotal roles in TMJ development and postnatal maintenance. This review provides a description of the many important recent advances in Hedgehog (Hh) signaling in TMJ biology. These include studies that used conventional approaches and those that analyzed the phenotype of tissue-specific mouse mutants lacking Ihh or associated molecules. The recent advances in understanding the molecular mechanism regulating TMJ development are impressive and these findings will have major implications for future translational medicine tools to repair and regenerate TMJ congenital anomalies and acquired diseases, such as degenerative damage in TMJ osteoarthritic conditions.


Asunto(s)
Cartílago Articular/embriología , Condrogénesis , Proteínas Hedgehog/metabolismo , Osteoartritis/embriología , Transducción de Señal , Disco de la Articulación Temporomandibular/embriología , Animales , Cartílago Articular/patología , Diferenciación Celular , Humanos , Cóndilo Mandibular/embriología , Cóndilo Mandibular/patología , Ratones , Osteoartritis/patología , Disco de la Articulación Temporomandibular/patología
3.
PLoS One ; 14(9): e0222784, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31536599

RESUMEN

Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.


Asunto(s)
Activinas/metabolismo , Secuencias de Aminoácidos , Heparitina Sulfato/metabolismo , Conformación Proteica , Activinas/química , Activinas/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Subunidades beta de Inhibinas/química , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Modelos Moleculares , Ésteres del Forbol/farmacología , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células THP-1 , Células U937
4.
J Biol Chem ; 293(37): 14371-14383, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30082319

RESUMEN

Signaling proteins, including bone morphogenetic proteins (BMPs), specifically interact with heparan sulfate (HS). These interactions regulate protein distribution and function and are largely mediated by domains rich in basic amino acids. The N-terminal region of BMP2 and BMP4 contains one such domain with a typical Cardin-Weintraub (CW) motif, but it is unclear whether the same occurs in BMP5, BMP6, and BMP7 that constitute a separate evolutionary subgroup. Peptides spanning the N-terminal domain of BMP2/4 interacted with substrate-bound HS with nanomolar affinity, but peptides spanning BMP5/6/7 N-terminal domain did not. We re-examined the entire BMP5/6/7 sequences and identified a novel CW-like motif at their C terminus. Peptides spanning this domain displayed high-affinity HS binding, but corresponding BMP2/4 C-terminal peptides did not, likely because of acidic or noncharged residue substitutions. Peptides pre-assembled into NeutrAvidin tetramers displayed the same exact binding selectivity of respective monomers but bound HS with greater affinity. Tests of possible peptide biological activities showed that the HS-binding N-terminal BMP2/4 and C-terminal BMP5/6/7 peptides stimulated chondrogenesis in vitro, potentially by freeing endogenous BMPs. Thus, HS interactions appear largely ascribable to domains at opposite ends of BMP2/4 versus BMP5/6/7, reiterating the evolutionary distance of these BMP subgroups and possible functional diversification.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Heparitina Sulfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Proteínas Morfogenéticas Óseas/química , Cartílago/citología , Diferenciación Celular , Humanos , Unión Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal
5.
J Biol Chem ; 293(20): 7703-7716, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29622677

RESUMEN

Hereditary multiple exostoses (HME) is a pediatric disorder caused by heparan sulfate (HS) deficiency and is characterized by growth plate-associated osteochondromas. Previously, we found that osteochondroma formation in mouse models is preceded by ectopic bone morphogenetic protein (BMP) signaling in the perichondrium, but the mechanistic relationships between BMP signaling and HS deficiency remain unclear. Therefore, we used an HS antagonist (surfen) to investigate the effects of this HS interference on BMP signaling, ligand availability, cell-surface BMP receptor (BMPR) dynamics, and BMPR interactions in Ad-293 and C3H/10T1/2 cells. As observed previously, the HS interference rapidly increased phosphorylated SMAD family member 1/5/8 levels. FACS analysis and immunoblots revealed that the cells possessed appreciable levels of endogenous cell-surface BMP2/4 that were unaffected by the HS antagonist, suggesting that BMP2/4 proteins remained surface-bound but became engaged in BMPR interactions and SMAD signaling. Indeed, surface mobility of SNAP-tagged BMPRII, measured by fluorescence recovery after photobleaching (FRAP), was modulated during the drug treatment. This suggested that the receptors had transitioned to lipid rafts acting as signaling centers, confirmed for BMPRII via ultracentrifugation to separate membrane subdomains. In situ proximity ligation assays disclosed that the HS interference rapidly stimulates BMPRI-BMPRII interactions, measured by oligonucleotide-driven amplification signals. Our in vitro studies reveal that cell-associated HS controls BMP ligand availability and BMPR dynamics, interactions, and signaling, and largely restrains these processes. We propose that HS deficiency in HME may lead to extensive local BMP signaling and altered BMPR dynamics, triggering excessive cellular responses and osteochondroma formation.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Condrogénesis/efectos de los fármacos , Exostosis Múltiple Hereditaria/patología , Regulación de la Expresión Génica/efectos de los fármacos , Heparitina Sulfato/antagonistas & inhibidores , Urea/análogos & derivados , Animales , Proteína Morfogenética Ósea 2/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/metabolismo , Humanos , Ratones , Ratones Endogámicos C3H , Fosforilación , Transducción de Señal , Urea/farmacología
6.
Matrix Biol ; 67: 15-31, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29447948

RESUMEN

Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones. In condyles in newborn mice, the apical polymorphic/progenitor cell layer was ~10 cell layer-thick and expressed the articular matrix marker Tenascin-C (Tn-C), and the underlying thick cell layer expressed Tn-C as well as the chondrogenic master regulator Sox9. By 1 month, condylar cartilage had gained its full width, but became thinner along its main longitudinal axis and displayed hypertrophic chondrocytes. By 3 months, articular cartilage consisted of a 2-3 cell layer-thick zone of superficial cells and chondroprogenitors expressing both Tn-C and Sox9 and a bottom zone of chondrocytes displaying vertical matrix septa. EdU cell tracing in juvenile mice revealed that conversion of chondroprogenitors into chondrocytes and hypertrophic chondrocytes required about 48 and 72 h, respectively. Notably, EdU injection in 3 month-old mice labeled both progenitors and maturing chondrocytes by 96 h. Conditional ablation of Ihh in juvenile/early adult mice compromised chondroprogenitor organization and function and led to reduced chondroprogenitor and chondrocyte proliferation. The phenotype of mutant condyles worsened over time as indicated by apoptotic chondrocyte incidence, ectopic chondrocyte hypertrophy, chondrocyte column derangement and subchondral bone deterioration. In micromass cultures of condylar apical cells, hedgehog (Hh) treatment stimulated chondrogenesis and alkaline phosphatase (APase) activity, while treatment with HhAntag inhibited both. Our findings indicate that the chondroprogenitor layer is continuously engaged in condylar growth postnatally and its organization and functioning depend on hedgehog signaling.


Asunto(s)
Cartílago Articular/citología , Condrocitos/citología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animales , Animales Recién Nacidos , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis , Ratones , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Articulación Temporomandibular/citología , Articulación Temporomandibular/metabolismo , Tenascina/metabolismo
7.
PLoS Genet ; 13(4): e1006742, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28445472

RESUMEN

Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths-called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton. Here, we carried out a retrospective analysis of cervical spine MRI and CT scans from 50 consecutive HME patients that included cranial skeletal images. Interestingly, nearly half of the patients displayed moderate defects or osteochondroma-like outgrowths in the cranial base and specifically in the clivus. In good correlation, osteochondromas developed in the cranial base of mutant Ext1f/f;Col2-CreER or Ext1f/f;Aggrecan-CreER mouse models of HME along the synchondrosis growth plates. Osteochondroma formation was preceded by phenotypic alteration of cells at the chondro-perichondrial boundary and was accompanied by ectopic expression of major cartilage matrix genes -collagen 2 and collagen X- within the growing ectopic masses. Because chondrogenesis requires bone morphogenetic protein (BMP) signaling, we asked whether osteochondroma formation could be blocked by a BMP signaling antagonist. Systemic administration with LDN-193189 effectively inhibited osteochondroma growth in conditional Ext1-mutant mice. In vitro studies with mouse embryo chondrogenic cells clarified the mechanisms of LDN-193189 action that turned out to include decreases in canonical BMP signaling pSMAD1/5/8 effectors but interestingly, concurrent increases in such anti-chondrogenic mechanisms as pERK1/2 and Chordin, Fgf9 and Fgf18 expression. Our study is the first to reveal that the cranial base can be affected in patients with HME and that osteochondroma formation is amenable to therapeutic drug intervention.


Asunto(s)
Exostosis Múltiple Hereditaria/genética , N-Acetilglucosaminiltransferasas/genética , Osteocondroma/genética , Proteína Smad1/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Médula Cervical/metabolismo , Médula Cervical/patología , Condrogénesis/genética , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Exostosis Múltiple Hereditaria/diagnóstico por imagen , Exostosis Múltiple Hereditaria/tratamiento farmacológico , Exostosis Múltiple Hereditaria/patología , Placa de Crecimiento/metabolismo , Placa de Crecimiento/patología , Heparitina Sulfato/biosíntesis , Humanos , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Mutación , Osteocondroma/diagnóstico por imagen , Osteocondroma/patología , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Tomografía Computarizada de Emisión
8.
Matrix Biol ; 52-54: 339-354, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26945615

RESUMEN

The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa's articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis.


Asunto(s)
Proteínas Hedgehog/metabolismo , Osteoartritis/patología , Osteofito/patología , Proteoglicanos/genética , Trastornos de la Articulación Temporomandibular/patología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Osteoartritis/genética , Osteofito/genética , Transducción de Señal , Trastornos de la Articulación Temporomandibular/genética
9.
Life Sci Space Res (Amst) ; 6: 21-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26256624

RESUMEN

The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.


Asunto(s)
Medio Ambiente Extraterrestre , Protones/efectos adversos , Exposición a la Radiación/efectos adversos , Radiación Ionizante , Piel/lesiones , Piel/efectos de la radiación , Animales , Astronautas , Relación Dosis-Respuesta en la Radiación , Exposición a Riesgos Ambientales/efectos adversos , Modelos Animales , Dosis de Radiación , Pigmentación de la Piel/efectos de la radiación , Actividad Solar , Sistema Solar , Porcinos , Porcinos Enanos , Irradiación Corporal Total/efectos adversos
10.
Life Sci Space Res (Amst) ; 4: 6-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26072960

RESUMEN

The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model. Vasodilatory responses to adenosine diphosphate (ADP; 10(−9)­10(−4) M), bradykinin (BK; 10(−11)­10(−6) M), and sodium nitroprusside (SNP; 10(−10)­10(−4) M) were assessed. The LAD arteries from Control (non-irradiated) and the eSPE (irradiated) animals were isolated and exhibited a similar relaxation response following treatment with either ADP or SNP. In contrast, a significantly reduced relaxation response to BK treatment was observed in the eSPE irradiated group, compared to the control group. These data demonstrate that simulated SPE radiation exposure alters LAD function.


Asunto(s)
Adenosina Difosfato/farmacología , Bradiquinina/farmacología , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Vasos Coronarios/efectos de la radiación , Corazón/efectos de la radiación , Nitroprusiato/farmacología , Vasodilatadores/farmacología , Animales , Electrones/efectos adversos , Masculino , Porcinos , Porcinos Enanos
11.
Connect Tissue Res ; 56(4): 272-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26076122

RESUMEN

Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.


Asunto(s)
Exostosis Múltiple Hereditaria/metabolismo , Heparitina Sulfato/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/patología , Exostosis Múltiple Hereditaria/terapia , Heparitina Sulfato/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Estructura Terciaria de Proteína , Investigación Biomédica Traslacional/métodos
12.
Exp Dermatol ; 24(2): 157-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25393687

RESUMEN

Colorimetric staining techniques such as immunohistochemistry (IHC), immunofluorescence (IF) and histochemistry (HC) provide useful information regarding the localization and relative amount of a molecule/substance in skin. We have developed a novel, straightforward method to assess colorimetric staining by combining features from two open-source software programs. As a proof of principle, we demonstrate the utility of this approach by analysing changes in skin melanin deposition during the radiation-induced tanning response of Yucatan mini-pigs. This method includes a visualization step to validate the accuracy of colour selection before quantitation to ensure accuracy. The data show that this method is robust and will provide a means to obtain accurate comparative analyses of staining in IHC/IF/HC samples.


Asunto(s)
Colorimetría/métodos , Melaninas/química , Piel/metabolismo , Programas Informáticos , Animales , Biopsia , Epidermis/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Fluorescente , Porcinos , Porcinos Enanos
13.
Gravit Space Res ; 2(1): 25-31, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25221782

RESUMEN

Space travel beyond the Earth's protective magnetosphere risks exposing astronauts to ionizing radiation, such as that generated during a solar particle event (SPE). Ionizing radiation has well documented effects on blood cells and it is generally assumed that these effects contribute to the hematopoietic syndrome (HS), observed in animals and humans, following exposure to total body irradiation (TBI). The purpose of the current study was to assess the role of gender on the effects of gamma radiation on blood cells. C3H/HeN mice were irradiated with a 137Cs gamma source. Radiation had similar effects on white blood cells (WBCs), lymphocytes, and granulocytes in male and female C3H/HeN mice, while red blood cell (RBC) counts and hematocrit values remained stable following radiation exposure. Non-irradiated male mice had 13% higher platelet counts, compared with their female counterparts, and showed enhanced recovery of platelets on day 16 following radiation exposure. Hence, gender differences influence the response of platelets to TBI exposure.

14.
Int J Radiat Oncol Biol Phys ; 88(4): 940-6, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24495588

RESUMEN

PURPOSE: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. METHODS AND MATERIALS: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. RESULTS: The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. CONCLUSIONS: Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.


Asunto(s)
Radiación Cósmica/efectos adversos , Coagulación Intravascular Diseminada/mortalidad , Traumatismos Experimentales por Radiación/mortalidad , Animales , Recuento de Células Sanguíneas , Coagulación Sanguínea , Plaquetas/efectos de la radiación , Causas de Muerte , Muerte Celular , Coagulación Intravascular Diseminada/etiología , Femenino , Hurones , Rayos gamma/efectos adversos , Hemostasis/efectos de la radiación , Dosificación Letal Mediana , Protones/efectos adversos , Dosis de Radiación , Traumatismos Experimentales por Radiación/complicaciones , Actividad Solar , Vuelo Espacial , Tromboelastografía
15.
Dev Biol ; 377(1): 100-12, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23458899

RESUMEN

During limb skeletogenesis the cartilaginous long bone anlagen and their growth plates become delimited by perichondrium with which they interact functionally. Yet, little is known about how, despite being so intimately associated with cartilage, perichondrium acquires and maintains its distinct phenotype and exerts its border function. Because perichondrium becomes deranged and interrupted by cartilaginous outgrowths in Hereditary Multiple Exostoses (HME), a pediatric disorder caused by EXT mutations and consequent heparan sulfate (HS) deficiency, we asked whether EXT genes and HS normally have roles in establishing its phenotype and function. Indeed, conditional Ext1 ablation in perichondrium and lateral chondrocytes flanking the epiphyseal region of mouse embryo long bone anlagen - a region encompassing the groove of Ranvier - caused ectopic cartilage formation. A similar response was observed when HS function was disrupted in long bone anlagen explants by genetic, pharmacological or enzymatic means, a response preceded by ectopic BMP signaling within perichondrium. These treatments also triggered excess chondrogenesis and cartilage nodule formation and overexpression of chondrogenic and matrix genes in limb bud mesenchymal cells in micromass culture. Interestingly, the treatments disrupted the peripheral definition and border of the cartilage nodules in such a way that many nodules overgrew and fused with each other into large amorphous cartilaginous masses. Interference with HS function reduced the physical association and interactions of BMP2 with HS and increased the cell responsiveness to endogenous and exogenous BMP proteins. In sum, Ext genes and HS are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling proteins including BMPs, and restrict chondrogenesis. Alterations in these mechanisms may contribute to exostosis formation in HME, particularly at the expense of regions rich in progenitor cells including the groove of Ranvier.


Asunto(s)
Huesos/embriología , Huesos/metabolismo , Cartílago/patología , Exostosis Múltiple Hereditaria/patología , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Huesos/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/embriología , Condrogénesis/efectos de los fármacos , Coristoma/patología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Exostosis Múltiple Hereditaria/embriología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , Ratones , Modelos Biológicos , N-Acetilglucosaminiltransferasas/deficiencia , Fenotipo , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Urea/análogos & derivados , Urea/farmacología
16.
J Am Soc Nephrol ; 23(6): 1027-38, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440900

RESUMEN

Mesangial cells and podocytes express integrins α1ß1 and α2ß1, which are the two major collagen receptors that regulate multiple cellular functions, including extracellular matrix homeostasis. Integrin α1ß1 protects from glomerular injury by negatively regulating collagen production, but the role of integrin α2ß1 in renal injury is unclear. Here, we subjected wild-type and integrin α2-null mice to injury with adriamycin or partial renal ablation. In both of these models, integrin α2-null mice developed significantly less proteinuria and glomerulosclerosis. In addition, selective pharmacological inhibition of integrin α2ß1 significantly reduced adriamycin-induced proteinuria, glomerular injury, and collagen deposition in wild-type mice. This inhibitor significantly reduced collagen synthesis in wild-type, but not integrin α2-null, mesangial cells in vitro, demonstrating that its effects are integrin α2ß1-dependent. Taken together, these results indicate that integrin α2ß1 contributes to glomerular injury by positively regulating collagen synthesis and suggest that its inhibition may be a promising strategy to reduce glomerular injury and proteinuria.


Asunto(s)
Lesión Renal Aguda/patología , Doxorrubicina/farmacología , Integrina alfa2beta1/metabolismo , Glomérulos Renales/lesiones , Lesión Renal Aguda/metabolismo , Albuminuria/fisiopatología , Análisis de Varianza , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunohistoquímica , Integrina alfa2beta1/efectos de los fármacos , Pruebas de Función Renal , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Distribución Aleatoria , Receptores de Colágeno/metabolismo
17.
Integr Biol (Camb) ; 4(1): 84-92, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22120019

RESUMEN

Integrins play a key role in cell-cell and cell-matrix interactions. Artificial surfaces grafted with integrin ligands, mimicking natural interfaces, have been used to study integrin-mediated cell adhesion. Here we report the use of a new chemical engineering technology in combination with single-molecule nanomechanical measurements to quantify peptide binding to integrins. We prepared latex beads with covalently-attached dextran. The beads were then functionalized with the bioactive peptides, cyclic RGDFK (cRGD) and the fibrinogen γC-dodecapeptide (H12), corresponding to the active sites for fibrinogen binding to the platelet integrin αIIbß3. Using optical tweezers-based force spectroscopy to measure non-specific protein-protein interactions, we found the dextran-coated beads nonreactive towards fibrinogen, thus providing an inert platform for biospecific modifications. Using periodate oxidation followed by reductive amination, we functionalized the bead-attached dextran with either cRGD or H12 and used the peptide-grafted beads to measure single-molecule interactions with the purified αIIbß3. Bimolecular force spectroscopy revealed that the peptide-functionalized beads were highly and specifically reactive with the immobilized αIIbß3. Further, the cRGD- and H12-functionalized beads displayed a remarkable interaction profile with a bimodal force distribution up to 90 pN. The cRGD-αIIbß3 interactions had greater binding strength than that of H12-αIIbß3, indicating that they are more stable and resistant mechanically, consistent with the platelet reactivity of RGD-containing ligands. Thus, the results reported here describe the mechanistic characteristics of αIIbß3-ligand interactions, confirming the utility of peptide-functionalized latex beads for the quantitative analysis of molecular recognition.


Asunto(s)
Plaquetas/metabolismo , Adhesión Celular/fisiología , Fibrinógeno/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Sitios de Unión , Plaquetas/citología , Dextranos/farmacología , Humanos , Pinzas Ópticas , Péptidos Cíclicos/sangre , Espectroscopía Infrarroja por Transformada de Fourier
18.
J Bone Miner Res ; 26(11): 2647-55, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21812029

RESUMEN

Human genetic disorders sharing the common feature of subcutaneous heterotopic ossification (HO) are caused by heterozygous inactivating mutations in GNAS, a gene encoding multiple transcripts including two stimulatory G proteins, the α subunit of the stimulatory G protein (G(s)α) of adenylyl cyclase, and the extralong form of G(s)α, XLαs. In one such disorder, progressive osseous heteroplasia (POH), bone formation initiates within subcutaneous fat before progressing to deeper tissues, suggesting that osteogenesis may involve abnormal differentiation of mesenchymal precursors that are present in adipose tissues. We determined by immunohistochemical analysis that GNAS protein expression is limited to G(s)α in bone-lining cells and to G(s)α and XLαs in osteocytes. By contrast, the GNAS proteins G(s)α, XLαs, and NESP55 are detected in adipocytes and in adipose stroma. Although Gnas transcripts, as assessed by quantitative RT-PCR, show no significant changes on osteoblast differentiation of bone-derived precursor cells, the abundance of these transcripts is enhanced by osteoblast differentiation of adipose-derived mesenchymal progenitors. Using a mouse knockout model, we determined that heterozygous inactivation of Gnas (by disruption of the G(s)α-specific exon 1) abrogates upregulation of multiple Gnas transcripts that normally occurs with osteoblast differentiation in wild-type adipose stromal cells. These transcriptional changes in Gnas(+/-) mice are accompanied by accelerated osteoblast differentiation of adipose stromal cells in vitro. In vivo, altered osteoblast differentiation in Gnas(+/-) mice manifests as subcutaneous HO by an intramembranous process. Taken together, these data suggest that Gnas is a key regulator of fate decisions in adipose-derived mesenchymal progenitor cells, specifically those which are involved in bone formation.


Asunto(s)
Diferenciación Celular , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Silenciador del Gen , Heterocigoto , Células Madre Mesenquimatosas/metabolismo , Osificación Heterotópica/patología , Osteoblastos/patología , Tejido Adiposo/citología , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Osificación Heterotópica/metabolismo , Osteoblastos/metabolismo , Osteogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células del Estroma/metabolismo , Células del Estroma/patología
19.
J Am Chem Soc ; 133(32): 12378-81, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21780757

RESUMEN

The design of ß-peptide foldamers targeting the transmembrane (TM) domains of complex natural membrane proteins has been a formidable challenge. A series of ß-peptides was designed to stably insert in TM orientations in phospholipid bilayers. Their secondary structures and orientation in the phospholipid bilayer was characterized using biophysical methods. Computational methods were then devised to design a ß-peptide that targeted a TM helix of the integrin α(IIb)ß(3). The designed peptide (ß-CHAMP) interacts with the isolated target TM domain of the protein and activates the intact integrin in vitro.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Secuencia de Aminoácidos , Diseño Asistido por Computadora , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína
20.
J Mol Biol ; 401(5): 882-91, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20615419

RESUMEN

Transmembrane (TM) helices engage in homomeric and heteromeric interactions that play essential roles in the folding and assembly of TM proteins. However, features that explain their propensity to interact homomerically or heteromerically and determine the strength of these interactions are poorly understood. Integrins provide an ideal model system for addressing these questions because the TM helices of full-length integrins interact heteromerically when integrins are inactive, but isolated TM helices are also able to form homodimers or homooligomers in micelles and bacterial membranes. We sought to determine the features defining specificity for homointeractions versus heterointeractions by conducting a comprehensive comparison of the homomeric and heteromeric interactions of integrin alphaIIbbeta3 TM helices in biological membranes. Using the TOXCAT assay, we found that residues V700, M701, A703, I704, L705, G708, L709, L712, and L713, which are located on the same face of the beta3 helix, mediate homodimer formation. We then characterized the beta3 heterodimer by measuring the ability of beta3 helix mutations to cause ligand binding to alphaIIbbeta3. We found that mutating V696, L697, V700, M701, A703. I704, L705, G708, L712, and L713, but not the small residue-X(3)-small residue motif S699-X(3)-A703, caused constitutive alphaIIbbeta3 activation, as well as persistent focal adhesion kinase phosphorylation dependent on alphaIIbbeta3 activation. Because alphaIIb and beta3 use the same face of their respective TM helices for homomeric and heteromeric interactions, the interacting surface on each has an intrinsic "stickiness" predisposing towards helix-helix interactions in membranes. The residues responsible for heterodimer formation comprise a network of interdigitated side chains with considerable geometric complementarity; mutations along this interface invariably destabilize heterodimer formation. By contrast, residues responsible for homomeric interactions are dispersed over a wider surface. While most mutations of these residues are destabilizing, some stabilized homooligomer formation. We conclude that the alphaIIbbeta3 TM heterodimer shows the hallmark of finely tuned heterodimeric interaction, while homomeric interaction is less specific.


Asunto(s)
Biopolímeros/metabolismo , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Biopolímeros/química , Células CHO , Cricetinae , Cricetulus , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrinas/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...