Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Bull (Beijing) ; 69(1): 49-58, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37973461

Solid-state sodium metal batteries utilizing inorganic solid electrolytes (SEs) hold immense potentials such as intrinsical safety, high energy density, and environmental sustainability. However, the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte, leading to short circuit and battery failure. Herein, confronting with the original nonuniform and high-resistance solid electrolyte interphase (SEI) at the Na-Na3Zr2Si2PO12 interface, an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface, through a spontaneous reaction between the metallic sodium (containing trace amounts of oxygen) and the Na3Zr2Si2PO12 SE. The oxygen-regulated spontaneous SEI is thin, uniform, and kinetically stable to facilitate homogenous interfacial Na+ transportation. Benefitting from the optimized SEI, the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm-2. Quasi-solid-state batteries with Na3V2(PO4)3 cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C (1 C = 117 mA cm-2) with a high capacity retention of 95.4%. This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries.

2.
Nanotechnology ; 34(2)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36306413

In this work, a self-powered system based on a triboelectric-electromagnetic hybrid pipeline energy harvesting module is demonstrated. Rabbit fur and poly tetra fluoroethylene (PTFE) are used as triboelectric electrodes to fabricate disk-type soft-contact triboelectric nanogenerators (TENGs) instead of traditional direct-contact TENGs to collect the mechanical energy of water flow and convert it into electrical energy. This design has a stable electrical output and gives an improved durability. Its simple fabrication process enables excellent potential for practical applications in industry. In addition, the hybridization of electromagnetic generator module and TENGs module to form a triboelectric-electromagnetic hybrid nanogenerator (TEHNG) can improve the electrical output performance, especially the current output. TEHNG cannot only power small electronic devices, such as lighting systems, but also collect independent fluid energy and monitor data signals simultaneously in harsh environments, such as fluid energy harvesting in industrial production pipelines and temperature and humidity in fluid environments. This work provides an efficient strategy to harvest multiple energies simultaneously, significantly increasing the yield and promoting the application of TENGs in engineering.

3.
Nanomicro Lett ; 14(1): 118, 2022 Apr 30.
Article En | MEDLINE | ID: mdl-35488958

With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel (CA) with highly enhanced thermal conductivity (TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires (SiC NWs)/boron nitride (BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m-1 K-1 at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy (EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 1011 Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of - 21.5 dB and a wide effective absorption bandwidth (< - 10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.

...