Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 21(2): e202301753, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38156418

RESUMEN

In current study antioxidant, antidiabetic, antimicrobial, anticholinesterase, and human carbonic anhydrase I, and II (hCA I and II) isoenzymes inhibition activities of Astrodaucus orientalis different parts were investigated. Achetylcholinesterse (AChE) and butyrylcholinesterse (BChE) inhibitory activities of octyl acetate were determined via molecular docking. Quantitative assessment of specific secondary metabolites was conducted using LC-MS/MS. An examination of chemical composition of essential oils was carried out by GC-MS/MS. A thorough exploration of plant's anatomical characteristics was undertaken. The highest phenolics level and DPPH antioxidant capacity were seen in root and fruit. Fruit essential oil demonstrated the highest AChE inhibition (44.13±3.61 %), while root dichloromethane sub-extract had the best inhibition towards BChE (86.13±2.58 %). Cytosolic hCA I, and II isoenzymes were influentially inhibited by root oil with 1.974 and 2.207 µM IC50 values, respectively. The most effective extracts were found to be root all extract/sub-extracts (except water) against C. tropicalis and C. krusei strains with MIC value 160>µg/mL. Sabinene (29.4 %), α-pinene (20.2 %); octyl acetate (54.3 %); myrcene (28.0 %); octyl octanoate (71.3 %) were found principal components of aerial parts, roots, flowers, and fruits, respectively. Flower essential oil, fruit dicloromethane and ethyl acetate exhibited potent α-glucosidase inhibitory activity with 900, 40, and 937 µg/mL IC50 values, respectively.


Asunto(s)
Acetatos , Enfermedad de Alzheimer , Diabetes Mellitus , Aceites Volátiles , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedad de Alzheimer/tratamiento farmacológico , Isoenzimas , Fitoquímicos/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
Life (Basel) ; 13(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37763342

RESUMEN

Determining the antioxidant abilities and enzyme inhibition profiles of medicinally important plants and their oils is of great importance for a healthy life and the treatment of some common global diseases. Kiwifruit (Actinidia deliciosa) oil was examined and researched using several bioanalytical methods comprehensively for the first time in this research to determine its antioxidant, antiglaucoma, antidiabetic and anti-Alzheimer's capabilities. Additionally, the kiwifruit oil inhibitory effects on acetylcholinesterase (AChE), carbonic anhydrase II (CA II), and α-amylase, which are linked to a number of metabolic illnesses, were established. Furthermore, LC-HRMS analysis was used to assess the phenolic content of kiwifruit oil. It came to light that kiwifruit oil contained 26 different phenolic compounds. According to the LC-HRMS findings, kiwifruit oil is abundant in apigenin (74.24 mg/L oil), epigallocatechin (12.89 mg/L oil), caryophyllene oxide (12.89 mg/L oil), and luteolin (5.49 mg/L oil). In addition, GC-MS and GC-FID studies were used to ascertain the quantity and chemical composition of the essential oils contained in kiwifruit oil. Squalene (53.04%), linoleoyl chloride (20.28%), linoleic acid (2.67%), and palmitic acid (1.54%) were the most abundant compounds in kiwifruit oil. For radical scavenging activities of kiwifruit oil, 1,1-diphenyl-2-picryl-hydrazil (DPPH•) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS•+) radicals scavenging techniques were examined. These methods effectively demonstrated the potent radical scavenging properties of kiwifruit oil (IC50: 48.55 µg/mL for DPPH•, and IC50: 77.00 µg/mL for ABTS•+ scavenging). Also, for reducing capabilities, iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) reducing abilities were studied. Moreover, kiwifruit oil showed a considerable inhibition effect towards hCA II (IC50: 505.83 µg/mL), AChE (IC50: 12.80 µg/mL), and α-amylase (IC50: 421.02 µg/mL). The results revealed that the use of kiwifruit oil in a pharmaceutical procedure has very important effects due to its antioxidant, anti-Alzheimer, antidiabetic, and antiglaucoma effects.

3.
Chem Biodivers ; 20(10): e202300654, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37610045

RESUMEN

Apilarnil is 3-7 days old drone larvae. It is an organic bee product known to be rich in protein. In this study, the biological activities of Apilarnil were determined by its antioxidant and enzyme inhibition effects. Antioxidant activities were determined by Fe3+ , Cu2+ , Fe3+ -TPTZ ((2,4,6-tris(2-pyridyl)-s-triazine), reducing ability and 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) scavenging assays. Also, its enzyme inhibition effects were tested against carbonic anhydrase I and II isoenzymes (hCA I, hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Antioxidant activity of Apilarnil was generally lower than the standard molecules in the applied methods. In DPPH⋅ radical scavenging assay, Apilarnil exhibited higher radical scavenging than some standards. Enzyme inhibition results towards hCA I (IC50 : 14.2 µg/mL), hCA II: (IC50 : 11.5 µg/mL), AChE (IC50 : 22.1 µg/mL), BChE (IC50 : 16.1 µg/mL) were calculated. In addition, the quantity of 53 different phytochemical compounds of Apilarnil was determined by a validated method by LC/MS/MS. Compounds with the highest concentrations (mg analyte/g dry extract) were determined as quinic acid (1091.045), fumaric acid (48.714), aconitic acid (47.218), kaempferol (39.946), and quercetin (27.508). As a result, it was determined that Apilarnil had effective antioxidant profile when compared to standard antioxidants.

4.
Pharmaceutics ; 15(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36986640

RESUMEN

The widespread usage of Schiff bases in chemistry, industry, medicine, and pharmacy has increased interest in these compounds. Schiff bases and derivative compounds have important bioactive properties. Heterocyclic compounds containing phenol derivative groups in their structure have the potential to capture free radicals that can cause diseases. In this study, we designed and synthesized eight Schiff bases (10-15) and hydrazineylidene derivatives (16-17), which contain phenol moieties and have the potential to be used as synthetic antioxidants, for the first time using microwave energy. Additionally, the antioxidant effects of Schiff bases (10-15) and hydrazineylidene derivatives (16-17) were studied using by the bioanalytical methods of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (ABTS•+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) scavenging activities, and Fe3+, Cu2+, and Fe3+-TPTZ complex reducing capacities. In the context of studies on antioxidants, Schiff bases (10-15) and hydrazineylidene derivatives (16-17) were found to be as powerful DPPH (IC50: 12.15-99.01 µg/mL) and ABTS•+ (IC50: 4.30-34.65 µg/mL). Additionally, the inhibition abilities of Schiff bases (10-15) and hydrazineylidene derivatives (16-17) were determined towards some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCAs I and II), enzymes that are linked to some global disorders including Alzheimer's disease (AD), epilepsy, and glaucoma. In the context of studies on enzyme inhibition, it was observed that the synthesized Schiff bases (10-15) and hydrazineylidene derivatives (16-17) inhibited AChE, BChE, hCAs I, and hCA II enzymes with IC50 values in ranges of 16.11-57.75 nM, 19.80-53.31 nM, 26.08 ± 8.53 nM, and 85.79 ± 24.80 nM, respectively. In addition, in light of the results obtained, we hope that this study will be useful and guiding for the evaluation of biological activities in the fields of the food, medical, and pharmaceutical industries in the future.

5.
Life (Basel) ; 13(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36676085

RESUMEN

In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 µg/mL; and ABTS•+, IC50: 5.21 µg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 µg/mL), AChE (IC50: 16.03 µg/mL), and α-amylase (IC50: 7.54µg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.

6.
J Biochem Mol Toxicol ; 37(2): e23255, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36424355

RESUMEN

A series of vinyl functionalized 5,6-dimethylbenzimidazolium salts are synthesized. All compounds were fully characterized by elemental analyses, MS, 1 H-NMR, 13 C-NMR, and IR spectroscopy techniques. Enzyme inhibition is a very active area of research in drug design and development. In this study, the synthesized novel benzimidazolium salts were evaluated toward the human erythrocyte carbonic anhydrase I (hCA I), and II (hCA II) isoenzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. They demonstrated highly potent inhibition ability against hCA I with Ki values of 484.8 ± 62.6-1389.7 ± 243.2 nM, hCA II with Ki values of 298.9 ± 55.7-926.1 ± 330.0 nM, α-glycosidase with Ki values of 170.3 ± 27-760.1 ± 269 µM, AChE with Ki values of 27.1 ± 3-77.6 ± 1.7 nM, and BChE with Ki values of 21.0 ± 5-61.3 ± 15 nM. As a result, novel vinyl functionalized 5,6-dimethylbenzimidazolium salts (1a-g) exhibited effective inhibition profiles toward studied metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly to treat some global disorders including glaucoma, Alzheimer's disease, and diabetes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Sales (Química)/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Estructura Molecular
7.
Molecules ; 27(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35630566

RESUMEN

Coumestrol (3,9-dihydroxy-6-benzofuran [3,2-c] chromenone) as a phytoestrogen and polyphenolic compound is a member of the Coumestans family and is quite common in plants. In this study, antiglaucoma, antidiabetic, anticholinergic, and antioxidant effects of Coumestrol were evaluated and compared with standards. To determine the antioxidant activity of coumestrol, several methods-namely N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+)-scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+)-scavenging activity, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging activity, potassium ferric cyanide reduction ability, and cupric ion (Cu2+)-reducing activity-were performed. Butylated hydroxyanisole (BHA), Trolox, α-Tocopherol, and butylated hydroxytoluene (BHT) were used as the reference antioxidants for comparison. Coumestrol scavenged the DPPH radical with an IC50 value of 25.95 µg/mL (r2: 0.9005) while BHA, BHT, Trolox, and α-Tocopherol demonstrated IC50 values of 10.10, 25.95, 7.059, and 11.31 µg/mL, respectively. When these results evaluated, Coumestrol had similar DPPH•-scavenging effect to BHT and lower better than Trolox, BHA and α-tocopherol. In addition, the inhibition effects of Coumestrol were tested against the metabolic enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase II (CA II), and α-glycosidase, which are associated with some global diseases such as Alzheimer's disease (AD), glaucoma, and diabetes. Coumestrol exhibited Ki values of 10.25 ± 1.94, 5.99 ± 1.79, 25.41 ± 1.10, and 30.56 ± 3.36 nM towards these enzymes, respectively.


Asunto(s)
Antioxidantes , Anhidrasas Carbónicas , Acetilcolinesterasa , Antioxidantes/química , Antioxidantes/farmacología , Hidroxianisol Butilado/farmacología , Hidroxitolueno Butilado/farmacología , Butirilcolinesterasa , Cumestrol/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Glicósido Hidrolasas , alfa-Tocoferol/farmacología
8.
Chem Biodivers ; 19(5): e202100787, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35315972

RESUMEN

In this study, a series of new hybrid molecules containing two important functional groups on the same skeleton were designed. 4-Hydroxybenzaldehyde and its two different derivatives were converted into their respective sulphonates by interacting with tosylchloride and methanesulfonyl chloride. Then, the desired molecules were synthesized by adding diethoxyphosphonate to the aldehyde group. Also, novel synthesis of hybrid compounds (4a-c and 5a-c) were tested toward some metabolic enzymes like carbonic anhydrase I and II isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme. The synthesis of hybrid compounds (4a-c and 5a-c) showed Ki values of in range of 25.084±4.73-69.853±15.19 nM against hCA I, 32.325±1.67-82.761±22.73 nM against hCA II and 1.699±0.25 and 3.500±0.91 nM against AChE. For these compounds, compound 4c showed maximum inhibition effect against hCA I and hCA II isoenzymes and compound 5b showed maximum inhibition effect against AChE enzyme. By performing docking studies of the most active compounds for their binding modes and interactions were determined.


Asunto(s)
Acetilcolinesterasa , Anhidrasa Carbónica II , Acetilcolinesterasa/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/química , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
9.
Chem Biodivers ; 19(3): e202100775, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35015378

RESUMEN

In the present work, antioxidant and antidiabetic potentials of mountain mint [Cyclotrichium leu-cotrichum (Stapf ex Rech. Fil.) Leblebici] was the first time appraised. In this sense, methanol (MECL) and water (WECL) extracts were obtained from aerial parts of mountain mint (Cyclotrichium leucotrichum) and studied for their antioxidant ability by several bioanalytical assays. Also, their inhibition profiles were realized toward several metabolic enzymes connected to some diseases, including butyrylcholinesterase (BChE), α-glycosidase, acetylcholinesterase (AChE), and α-amylase enzymes. Additionally, their phenolic contents were determined by putative chromatographic method of LC/MS/MS. Consequently, nineteen phenolic molecules were identified in MECL and fifteen phenolic molecules were found in WECL. Also, antioxidant effects of both extracts were studied using by the methods of 1,1-diphenyl-2-picryl-hydrazyl (DPPH⋅), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+ ) and N,N-dimethyl-p-phenylenediamine (DMPD.+ ) scavenging activities, ferric (Fe3+ ) and cupric (Cu2+ ) ions and Fe3+ -2,4,6-tri(2-pyridyl)-s-triazine (TPTZ) reducing capacities. MECL and WECL were found as powerful DPPH⋅ (IC50 : 23.74 and 28.85 µg/mL), ABTS.+ (IC50 : 12.53 and 14.05 µg/mL) and DMPD.+ scavenging effects (IC50 : 43.52 and 54.80 µg/mL). Also, both extracts demonstrated the effective inhibition on AChE (IC50 : 69.31 and 115.51 µg/mL), BChE (IC50 : 57.75 and 86.62 µg/mL), α-glycosidase (IC50 : 36.47 and 62.94 µg/mL) and α-amylase (IC50 : 1.01 and 3.43 µg/mL). This study will be useful for future studies to determine the antioxidant properties and enzyme inhibition profile of food, medical and industrially important plants.


Asunto(s)
Antioxidantes , Mentha , Acetilcolinesterasa/química , Antioxidantes/química , Butirilcolinesterasa/química , Antagonistas Colinérgicos , Hipoglucemiantes/farmacología , Extractos Vegetales/química , Polifenoles/farmacología , Espectrometría de Masas en Tándem
10.
Heliyon ; 7(5): e06986, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34027185

RESUMEN

In order to evaluate the antioxidant activity of evaporated ethanolic extract (EESB) and lyophilized water extract (WESB) of Shaggy bindweed (Convulvulus betonicifolia Mill. Subs), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging effect, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+) binding activities were separately performed. Also, ascorbic acid, α-tocopherol and BHT were used as the standard compounds. Additionally, some phenolic compounds that responsible for antioxidant abilities of EESB and WESB were screened by liquid chromatography-high resolution mass spectrometry (LC-HRMS). At the same concentration, EESB and WESB demonstrated effective antioxidant abilities when compared to standards. In addition, EESB demonstrated IC50 values of 1.946 µg/mL against acetylcholinesterase (AChE), 0.815 µg/mL against α-glycosidase and 0.675 µg/mL against α-amylase enzymes.

11.
Molecules ; 26(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922645

RESUMEN

Kinkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kinkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kinkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kinkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kinkor (Ferulago stellata) demonstrated IC50 values of 1.772 µg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 µg/mL against α-glycosidase, and 0.639 µg/mL against α-amylase enzyme respectively.


Asunto(s)
Antioxidantes/química , Apiaceae/química , Antagonistas Colinérgicos/química , Cromatografía Liquida/métodos , Hipoglucemiantes/química , Componentes Aéreos de las Plantas/química , Plantas Medicinales/química , alfa-Amilasas/metabolismo
12.
Saudi Pharm J ; 28(1): 1-14, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31920428

RESUMEN

In current study is done antioxidant, anticholinesterase, and carbonic anhydrase isoenzymes I and II inhibition assays, screening of biological active compounds and electronic microscopy analysis of secretory canals of fruits, flowers, roots, and aerial parts extracts and essential oils of Angelica purpurascens. Phenolic constituents, antioxidant, and anti-lipid peroxidation potentials of variants were estimated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) processes. Cholinesterase inhibition effect was detected through Ellman's method. The GC/ Mass Spectrometry (MS) and gas chromatography (GC)-flame Ionization Detector (FID) was used for essential oils analysis. NMR techniques was used for identification of the isolated compounds. The fruit hexane and dichloromethane fractions exhibited a greater antioxidant capacity and total phenolic content. The dichloromethane fraction of fruit demonstrated the most higher acetylcholinesterase inhibition (39.86 ± 2.63%), while the fruit hexane fraction displayed the best inhibition towards butyrylcholinesterase (84.02 ± 1.28%). Cytosolic isoenzymes of human carbonic anhydrase (hCA) I, and II isoenzymes were influentially suppressed by flower and fruit dichloromethane fractions with 1.650 and 2.020 µM IC50 values, respectively. The electronic microscopy analysis of secretory canals found that the small number of secretory canals were at leaf while the largest shape of secretory canals was at the fruit. The secretory canals of roots, aerial parts, and fruits include more monoterpene hydrocarbons, while the canals, existing in the flowers are qualified by a higher presence of sesquiterpenes ß-caryophyllene (12.1%), germacrene D (4.5%) and ether octyl acetate (11.9%). The highest level of monoterpene ß-phellandrene (47.6%) and limonene (8.2%) were found in the fruit essential oil. The next isolated compounds from fruits of A. purpurascens like stigmasterol, ß-sitosterol, bergapten, and oxypeucedanin have shown high anticholinesterase and antioxidant activities.

13.
J Enzyme Inhib Med Chem ; 31(sup3): 1-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27329935

RESUMEN

A series of tetrahydropyrimidinethiones were synthesized from thiourea, ß-diketones and aromatic aldehydes, such as p-tolualdehyde, p-anisaldehyde, o-tolualdehyde, salicylaldehyde and benzaldehyde. These cyclic thioureas showed good inhibitory action against acetylcholine esterase (AChE), butyrylcholine esterase (BChE), and human (h) carbonic anhydrase (CA) isoforms I and II. AChE and BChE inhibitions were in the range of 6.11-16.13 and 6.76-15.68 nM, respectively. hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 47.40-76.06 nM for hCA I, and of 30.63-76.06 nM for hCA II, respectively. The antioxidant activity of the cyclic thioureas was investigated by using different in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Cu2+ and Fe3+ reducing, and Fe2+ chelating activities.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/farmacología , Butirilcolinesterasa/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica I/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de la Colinesterasa/farmacología , Pirimidinas/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
14.
J Enzyme Inhib Med Chem ; 31(6): 1698-702, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26864149

RESUMEN

Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread and intensively studied metalloenzymes present in higher vertebrates. Acetylcholinesterase (AChE, E.C. 3.1.1.7) is intimately associated with the normal neurotransmission by catalysing the hydrolysis of acetylcholine to acetate and choline and acts in combination with butyrylcholinesterase (BChE) to remove acetylcholine from the synaptic cleft. Lactoperoxidase (LPO) is an enzyme involved in fighting pathogenic microorganisms, whereas glutathione S-transferases (GSTs) are dimeric proteins present both in prokaryotic and in eukaryotic organisms and involved in cellular detoxification mechanisms. In the present study, the inhibition effects of rosmarinic acid on tumour-associated carbonic anhydrase IX and XII isoenzymes, AChE, BChE, LPO and GST enzymes were evaluated. Rosmarinic acid inhibited these enzymes with Kis in the range between micromolar to picomolar. The best inhibitory effect of rosmarinic acid was observed against both AChE and BChE.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Butirilcolinesterasa/efectos de los fármacos , Anhidrasas Carbónicas/efectos de los fármacos , Cinamatos/farmacología , Depsidos/farmacología , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Isoenzimas/antagonistas & inhibidores , Lactoperoxidasa/antagonistas & inhibidores , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...